Bibliography of BBN documents on parallel processing
(this file was passed to D. Walden by Mike Beeler sometime in 1994 or earlier)

1.0 MONARCH

1.1 Monarch External Publications

1.2 Monarch Internal Publications

"Multiprocessor System Architectures: The Monarch Multiprocessor, vol. 2: Technical Proposal," BBN Labs, November 1984. The only technical description of the Monarch architecture I have been able thus far to locate.

"Dynamic Delay Adjustment: A Technique for High-Speed Asynchronous Communication," BBN Labs, December 1985. Authors: P. Bassett, L. Glasser, R. Rettberg. Presents the circuit-based Dynamic Delay Adjustment (DDA) technique for automatically adjusting signal delays in a MOS system. The technique is characterized by global clock frequency distribution coupled with local, on-chip modems which dynamically adjust the effective delay of data streams between chips. Paper was presented at the Fourth MIT Conference on Advanced Research in VLSI, April 7-9, 1986.

2.0 BUTTERFLY

2.1 Butterfly External Publications

"Beyond The Baskett Benchmark," M. Beeler, BBN Author, Computer Architecture News, Association for Computing Machinery, Special Interest Group on Computer Architecture, vol. 12 no. 1, March 1984. Examines criteria for adapting the Baskett benchmark to a multiprocessor and for comparing the results of other benchmarks to the initial Baskett results on the Butterfly computer.

"A Multiprocessor Implementation of Relaxation-Based Electrical Circuit Simulation," J.T. Deutsch and A. R. Newton, Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley. Published in the 1984 IEEE 21st Design Automation Conference Proceedings.

"Getting Started with the BBN Butterfly Multiprocessor," Thomas J. LeBlanc, Computer Science Department, University of Rochester, July 1985.

"Results from a Parallel Branch and Bound Algorithm for the Asymmetric Traveling Salesman Problem," Miller, Don L. and Pekny, Joseph F.; (Carnegie-Mellon U.) 1988?

2.2 Butterfly Internal Publications

"Computer Architecture Issues for Advanced Memory Technology, BBN Proposal #P75-CSY-49 to ARPA, dated 30 May 1975, proposing a two-man-year general study by the chief architects of the Pluribus system of the ways memories and processors can be configured to gain improved performance through parallelism. Focus of the study to be multi-instruction-stream/multi-data-stream architectures of the next decade. Information contained in this proposal was classified as proprietary at date of issue. Valuable reference document.

"Architecture Study Group Notes" or "ASG Notes," containing internal memoranda, notes etc. about early design decisions on the Butterfly system. An extra reference set of ASG notes #1-61, covering ASG meeting from January 1, 1976 to December 15, 1982, is available thanks to contributors P. Carvey, M. Kraley, W. Milliken, and R. Rettberg.

"Development of a Voice Funnel System, Design Report," BBN Report #4098, August 1979. This report to DARPA appears not to be a part of the QTR series. Authors are R. Rettberg, C. Wyman, D. Hunt, M. Hoffman, P. Carvey, B. Hyde, W. Clarke, and M. Kraley. Includes chapters on the Voice Funnel Application, the Butterfly Switch, the Processor Node, and System Software. For revisions and changes in details to the Voice Funnel application software presented here, see QTR 14, BBN Report No. 4928, March 1980.

"Butterfly Development for Strategic Computing." BBN Proposals P84-CSD-027, P84-CSD-027A, and P84-CSD-027B (April, May, and August 1984, respectively). The third proposal appears to update the second, the second the first.

Butterfly Working Group Notes Series (BWGN), ref. D. Allen, BBN Labs, February 1985. An on-line library exchanging technical information and topics related to the Butterfly Parallel Processor, BBN Labs Inc. The BWGN library resides at a BBN host connected to the DARPA Internet.

"Using the Butterfly To Solve Simultaneous Linear Equations," R. Thomas, BBN author, March 1985. Reports a series of experiments on the Butterfly multiprocessor using the Gaussian Elimination solution method. Part of the project to explore the application of the Butterfly to finite element analysis. See next reference.

"Benchmark Results for a 256-Node Butterfly™ Parallel Processor," BBN Labs, August 16, 1985. Author: R. Gurwitz. Presents the results of a series of six benchmarks measuring the amount of execution speedup that results from applying successively more processors to the problems.

"Butterfly™ Parallel Processor Tutorial (for the C Language): DRAFT," M. Beeler, BBN Labs, (Fall 1985)

"Behavior of the Butterfly™ Parallel Processor in the Presence of Memory Hot Spots," Robert H. Thomas, BBN Labs, January 1986. The access time for a memory that contains a hot spot is degraded, but the presence of the hot spot has little effect on the performance of programs that avoid the hot memory. Furthermore, tree saturation does not occur in the Butterfly Switch. Paper submitted to the 1986 International Conference on Parallel Processing.

"APTEC Data Exchange Processor to VME Interface Unit," Technical and Management Proposal, No. P86-CISD-041, BBN Labs to Hughes Aircraft Company, April 1986. Includes a summary of the technical approach to developing the APTEC-VME Interface unit, descriptions of the proposed unit and APTEC microcode, and a discussion of acceptance testing and diagnostic software.

Butterfly Workshop Tutorial Package for workshop April 28-May 2, 1986. Primarily a compilation of Butterfly slide presentation documents for this workshop only. Includes a workshop schedule of presentations and list of attendees.

"Finite Element Analysis on a Shared-Memory Multiprocessor," H. Allik, S. Moore, E. O'Neil, and E. Tenenbaum, BBN Labs, May 1986. To be presented at the First Annual Congress in Computational Mechanics, University of Texas at Austin, September 1986. To the previously reported results of near linear speedup for matrix multiplication and Gaussian elimination algorithms on a 128-node Butterfly, this paper adds corresponding results for both static and transient Finite Element Method (FEM) calculations using runs of the same implementation (except for actual multiprocessing) on the DEC VAX computer.

"Use of the Butterfly™ Network Software," BBN Labs, June 1986. Authors: D. Mankins, C. Howe. Introduces design concepts, terminology, and components of the network software with tutorial examples of network routines used in writing programs. Includes concluding section on how to bring up the network software on your machine.

"The Butterfly™ RAMFile System," BBN Report No. 6351, September 1986. Author: Bruce Moxon. Describes a subroutine library that provides application programmers with file-like data access to Butterfly memory. The system uses a set of Unix-like file I/O primitives to support buffered read and write operations at memory access speeds. The RAMFile system also supports parallel read and write operations on this data.

"Parallelism in the Execution of a Routine Knowledge Rule System on the Butterfly™
Computer," Boulanger, A.; BBN Laboratories Inc., Technical Report No. 6436,
December 1986.

and William Downey. This book incorporates all pertinent material from the Voice
Funnel Quarterly Technical Reports and other published sources into a detailed technical
summary of the Butterfly hardware and software design. The book also provides all the
data needed to prepare a site, to bring up a newly installed machine, and to begin using it.

"Application of the Butterfly™ Parallel Processor in Artificial Intelligence," Allen, D.C.

"Parallel Simulation of the Monarch on the Butterfly," Kipnis, S.; Butterfly Users' Meeting,
October 1987; BBN Advanced Computers Inc., Cambridge, MA.

Meeting, October 1987, BBN Advanced Computers, Cambridge, MA.

"An Overview of the Butterfly GP1000: A Large-Scale Parallel UNIX Computer,"
Howe, Carl D.; International Conference on Supercomputing, Boston, June 1988. (?)

"Porting Molecular Mechanics Software to the Butterfly™ Parallel Computer," Bergsma,

"A LISP for the Butterfly ™ Parallel Processor," D. Allen and staff., BBN Labs, (in
progress).

"Butterfly Hardware Users Guide" BBN Labs. Authors: T. Blackadar and staff.

3.0 PLURIBUS

3.1 Pluribus External Publications

"The Interface Message Processor for the ARPA Computer Network," F.E. Heart, R.E.
Kahn, S.M. Ornstein, W.R. Crowther, and D.C. Walden, first appearance in AFIPS
Advances in Computer Communications, Artech House, 1974. Also in P.E. Green &
packet-switch (based on the Honeywell 516) developed by BBN for the ARPA Network.
Pre-Pluribus reference document.

"The Terminal IMP for the ARPA Computer Network," S.M. Ornstein, F.E. Heart, W.R.
Crowther, S.B. Russell, H.K. Rising, first appearance in AFIPS Conference
Computer Communications, Artech House Inc., 1974, pp. 317-328; also in P. Green &
document. Describes the second packet-switch (based on the Honeywell 316, successor
to the 516) developed at BBN for ARPA.

"A New Minicomputer/Multiprocessor for the ARPA Network," F.E. Heart, S.M.
Ornstein, W.R. Crowther, and W.B. Barker, first appearance in AFIPS Conference
Papers; International Advanced Study Institute, Computer Communication Networks,
University of Sussex, September 1973. Also in W.W. Chu, Ed., Advances in Computer
Communications, Artech House, 1974. Called the "initial" Pluribus paper. Presents
HSMIMP multiprocessor architecture; choice of processor(SUE), system design (busses
etc.), behavior (contention,reliability). Contains early bibliography.

"Reliability Issues in the ARPA Network," W.R. Crowther, J.M. McQuillan, and D.C.
Walden; first appears in Proceedings of the ACM/IEEE Third Data Communications

"The BBN Multiprocessor," S.M. Ornstein, W.B. Barker, R.D. Bressler, W.R. Crowther,
F.E. Heart, M.F. Kraley, A. Michael, and M.J. Thrope; first appears in Proceedings of
the Seventh Annual Hawaii International Conference on System Sciences, Computer
issues/features of the prototype high-speed IMP as a packet-switching node for the
ARPANET (addressing & locking, access enabling, discovery, parity, reloading,
mechanical modularity, the test program).

Walden; first appears in Proceedings of the Seventh Annual Hawaii International
"No real relevance to Pluribus," I am told. Describes an implementation of the first
satellite IMP built on 316 hardware. Paper often cited in later PSAT papers.

"Pluribus -- A Reliable Multiprocessor," S.M. Ornstein, W.R. Crowther, M.F. Kraley,
R.D. Bressler, A. Michael, and F.E. Heart; first appears in AFIPS Conference
multiprocessor architecture; then reliability goals and strategies, including multiple
copying of algorithm resources, simplicity, dealing with redundancy, and use of
watchdog timers; and, finally, system reliability mechanisms as applied to example
system failures.

"Pluribus -- A Reliable Multiprocessor," S.M. Ornstein, W.R. Crowther, M.F. Kraley,
R.D. Bressler, A. Michael, and F.E. Heart; first appears in AFIPS Conference
multiprocessor architecture; then reliability goals and strategies, including multiple
copying of algorithm resources, simplicity, dealing with redundancy, and use of
watchdog timers; and, finally, system reliability mechanisms as applied to example
system failures.

"Pluribus: A Multiprocessor for Communications Networks," R.D. Bressler, M.F.
Kraley, and A. Michel; first appears in 14th Annual ACM /NBS Technical Symposium --
"Computing in the Mid-70's: An Assessment," pp 13-19, June 1975. Describes Pluribus hardware and software design philosophy, discusses reliability strategies, and presents actual and potential applications of the Pluribus line. These applications include Pluribus IMPs, Satellite IMPs, a Communications and Control Processor (CCP), Private Line Interfaces (PLIs), Front-End Processing, and a Pluribus Terminal IMP (TIP).

"The Evolution of a High Performance Modular Packet-Switch," S.M. Ornstein and D.C. Walden; first appearance in Conference 1975 International Conference Communications, vol. 1, pp. 6-17 to 6-21, June 1975. Profiles BBN's several-year effort (1968-74) to build packet-switches. Describes the original pair of switches based on the Honeywell 516; the later, less expensive 316 version; and the new Pluribus. Reference document to the period.

"A Network-Oriented Multiprocessor Front-End Handling Many Hosts and Hundreds of Terminals," W.F. Mann, S.M. Ornstein, and M.F. Kraley. First appears in AFIPS Conference Proceedings, vol. 45, pp. 533-540, June 1976. Key multiprocessor document. The design and system requirements of a large-scale front-end computer, based on the design of the Pluribus, is contrasted with the design of the ARPANET TIP.

"Communications Applications of the Pluribus Computer," F.E. Heart and D.C. Walden; appears in the Conference Record of the 1976 IEEE National Telecommunications Conference, Dallas, Tx. Nov. 29 - Dec 1, 1976, pp. 7.1-1 to 7.1-5. Introduces the Pluribus, discusses its suitability for communications applications, presents seven applications where a Pluribus system has been or will be used, and notes the current operational status of Pluribus systems (5 in field operation; 5 constructed and awaiting delivery; several more used for software and hardware development and system fabrication and testing).

"Software Techniques for Practical Multiprocessors," E. Roberts, Ph.D. Thesis in Applied Mathematics, Harvard University, May 1980. Explores problems of parallel control facilities for multiprocessor systems and presents techniques to simplify development of efficient software in a multiprocessor environment. Includes a survey of the Pluribus, a critique of the rendezvous mechanism in ADA, and presents a process/event model for a high level language and/or ADA.

"Integration of Voice and Data in the Wideband Packet Satellite Network," same authors. Appears first in IEEE Transactions on Communications, 1983, and also in IEEE Journal on Selected Areas in Communications, December 1983. The Wideband (packet satellite) network is being used to evaluate the use of packet transmission for efficient voice communication, voice conferencing, and integration of voice and data over a satellite channel. This paper, which revises "A Multiprocessor Channel Scheduler for the Wideband Packet Satellite Network" (June 1983), describes the protocols and mechanisms upon which the Wideband packet satellite network is based.

"Integration of Voice and Data in the Wideband Packet Satellite Network," G. Falk, S. Groff, W. Milliken, M. Nodine, S. Blumenthal, and W. Edmond. Appears first in IEEE Transactions on Communications, 1983, and also in IEEE Journal on Selected Areas in Communications, December 1983. The Wideband packet satellite network is being used to evaluate the use of packet transmission for efficient voice communication, voice conferencing, and integration of voice and data over a satellite channel. This paper, which revises "A Multiprocessor Channel Scheduler for the Wideband Packet Satellite Network" (June 1983), describes the protocols and mechanisms upon which the Wideband packet satellite network is based.

"Integration of Voice and Data in the Wideband Packet Satellite Network," same authors. Appears first in IEEE Transactions on Communications, 1983, and also in IEEE Journal on Selected Areas in Communications, December 1983. The Wideband packet satellite network is being used to evaluate the use of packet transmission for efficient voice communication, voice conferencing, and integration of voice and data over a satellite channel. This paper, which revises "A Multiprocessor Channel Scheduler for the Wideband Packet Satellite Network" (June 1983), describes the protocols and mechanisms upon which the Wideband packet satellite network is based.

"Integration of Voice and Data in the Wideband Packet Satellite Network," G. Falk, S. Groff, W. Milliken, M. Nodine, S. Blumenthal, and W. Edmond. Appears first in IEEE Transactions on Communications, 1983, and also in IEEE Journal on Selected Areas in Communications, December 1983. The Wideband packet satellite network is being used to evaluate the use of packet transmission for efficient voice communication, voice conferencing, and integration of voice and data over a satellite channel. This paper, which revises "A Multiprocessor Channel Scheduler for the Wideband Packet Satellite Network" (June 1983), describes the protocols and mechanisms upon which the Wideband packet satellite network is based.
Network" (June 1983), describes the protocols and mechanisms upon which the Wideband packet satellite network is based.

"Experiences in Building a Wideband Packet Satellite Network," BBN author S. Blumenthal, paper presented at NETWORKS 85' London and reproduced by Online Publications, Pinner, UK, 1985. Includes an "overview" and "current status" sections, along with a discussion of systems design and integration issues that have arisen during the development of the Wideband Network and, finally, a section on "network management tools." A version of this paper, entitled "Arpanet Hitches a Satellite Ride," was published in Communications Systems Worldwide, September 1985.

"A Network-Oriented Multiprocessor Front-End Handling Many Hosts and Hundreds of Terminals," W.F. Mann, S.M. Ornstein, and M.F. Kraley. First appears in AFIPS Conference Proceedings, vol. 45, pp.533-540, June 1976. Key multiprocessor document. The design and system requirements of a large-scale front-end computer, based on the design of the Pluribus, is contrasted with the design of the ARPANET TIP.

3.2 Pluribus Internal Publications

Combined Quarterly Technical Reports 7-37, including the "Pluribus Satellite IMP Development," reports, covering the period 1972-1985. The relevant CQTR's are listed here chronologically by name of principal BBN author. R. Bressler CQTR's #7 -23: See #7 BBN Report No. 3722 (Nov 1977); #8, No. 3767 (Feb 1978); #9, No. 3824 (May 1978); #10, No. 3911 (Aug 1978); #11, No. 3984 (Nov 1978); #12, No. 4068 (Feb 1979); #13, No. 4133 (May 1979); #14, No. 4184 (Aug 1979); #15, No. 4279 (Nov 1979); #16, No. 4342 (Feb 1980); #17, No 4399 (May 1980); #18, No. 4474 (Aug 1980); #19, No. 4526 (Nov 1980); #20, No. 4609 (Feb 1981) missing; #21, No. 4679 (May 1981); #22, No. 4761 (Aug 1981); #23, No. 4825 (Nov 1981). J.F. Haverty CQTR's #24-29: See #24, No. 4868 (Feb 1982); #25, No. 5003 (May 1982); #26, No. 5129 (Aug 1982); #27, No. 5215 (Nov 1982); #28, No. 5286 (Feb 1983); #29, No. 5345 (May 1983). S. Blumenthal CQTR's #30-37: See #30, No. 5408 (Sept 1983); #31, No. 5492 (Nov 1983); #32, No. 5580 (Feb 84); #33, No. 5774 (May 1984); #34, No. 5797 (Aug 1984);#35, No. 5883 (Nov 1984); #36, No. 5977 (Feb 1985); #37, No. 3992 (May 1985).

HSMIMP Notes. Index and permuted Index for Notes 1-328. HSMIMP Notes 1-425 were created. The memos span the period 20 June 1972 to 19 January 1981. The latest notes include discussion of shortcomings from the programmer's point of view. Some of the ideas went into the Butterfly -- John Robinson. Reference: the notes cannot be found in the BBN Libraries. John Robinson's collection of HSMIMP notes lacks only numbers 258, 271, 348, 379, 396, 414, 416, 419, 423.
Photographs of Pluribus (and PTIP and HSMIMP) have been archived by Bob Brooks (x3453). These photos include technical and more informal shots.

"Proposal for Development, Implementation, and Installation of the Communication and Control Processor for a Seismic Network," BBN Proposal No. P74-CSY-26, 22 May 1974. Based on the new Pluribus multiprocessor architecture, the CCP is proposed as the data collection and routing center for on-line seismic data collection as well as the network control center for the seismic network (VELA).

"Use of the ARPA Network by the Seismic Data Collection Network," BBN Report 2995, H. Briscoe Principal Investigator, 30 January 1975. The report that first recommended adding Pluribus IMPS to the Arpanet to solve certain performance problems that would occur if the seismic data network used the Arpanet. A detailed analysis of the data flow paths in the Arpanet indicated several areas where the network would have to be expanded to accommodate the large amount of anticipated seismic data. Reference note: BBN Report 2995 was incorporated into BBN Report 3109, "Final Report: A Study of Communications for the Seismic Data Collection Network," H. Briscoe, Principal Investigator, 30 June 1975.

"Final Report: A Study of Communications for the Seismic Data Collection Network," BBN Report No. 3109, H. Briscoe, Principal Investigator, 30 June 1975. Reports the results of four engineering "tasks" or studies intended to verify the design and support the implementation of the seismic data collection network, concentrating in particular on the communication subsystem and especially on the ARPA network paths.

"Programmable Reliability in a Multiprocessor," S.M. Ornstein, W.R. Crowther, and M.F. Kraley. Unsure as to first appearance or date of publication, if published or presented. Postdates previous Pluribus paper, probably circa 1975. Discusses a "highly adaptive" software approach to fault detection in a shifting hardware environment. I have one hard copy.

"A Multiprocessor Design," W.B. Barker, October 1975. This manuscript, BBN Report #3126, was submitted by the author as his doctoral thesis at Harvard University. Ben Barker is also supplying us with some introductory material to the thesis that did not appear in the BBN report.

"Acceptance Test Procedures for the Communications and Control Processor," BBN Report 3185, H. Briscoe, Principal Investigator, 9 April 1976. Document defines tests that demonstrate the useable features of the 4-processor CCP, installed at the Seismic Data Analysis Center in July 1975. Acceptance tests were begun in November 1975 and completed in February 1976. Five phases of testing are described, including the HIT
hardware test program (a general Pluribus system test configuration program), the operational program, reliability, system operation, and demonstrate editor and assembler.

"Interim Report on Refinements and Operator Training for the Seismic Communication and Control Processor System (CCP)," BBN Report No. 3444, H. Briscoe, Principal Investigator, 18 November 1976. Also prepared for the VELA Seismological Center. Reviews three training courses, maintenance assistance, and software refinements to the operating system.

"Interim Report on Phase I Expansion of the Seismic Communication and Control Processor System (CCP)," BBN Report No. 3531, H. Briscoe, Principal Investigator, April 1977 Reviews implementation and acceptance testing of Phase I hardware and software expansion of the CCP in December 1976 and January 1977. This first phase of upgrading of the CCP included increasing private and shared memory in the CCP, designing and coding input software for leased line North American Network stations, and a design study for buffered interface hardware for leased line data.

behind early multiprocessor development. Tilden's notes include a guide to PLURIBUS on-line documentation as of 1978.

"VELANET Communication Protocols between the CCP and SIP and between the CCP and DP," BBN Report No. 3460, H. Briscoe, Principal Investigator, 5 April 1977. Describes revised protocols and formats for communication over the ARPANET between the CCP, acting as the central node in the VELANET, and the Seismic Input Processor at CCA and between the CCP and the Detection Processor.

"Final Report on Phase II Expansion of the Seismic Communication and Control Processor System (CCPP)," BBN Report No. 3686, H. Briscoe, Principal Investigator, November 1977. Reviews the second phase of upgrading to include an increase in the number of processors in the CCP, replacing the 6 SLI boards with 6 buffered SLI boards, making appropriate changes to operational and test software, and modifying the communication protocol software to accommodate a new NORSAR format and improved ARPANET interaction.

"ARPANET Completion Report," an ARPA report prepared at BBN by D. Walden, A. MacKenzie and staff, January 3, 1978. Contains an executive summary, formal completion report, history and review of the ARPANET project, and a BBN ARPANET bibliography. The September, 1977 draft of this report has additional sections on the ARPANET design and implementation, experience in use and operations, and observations.

TIPMEM Series. Numbered 1-20 and dated 26 October 1978 to 17 April 1980. These notes describe some aspects of the PluribusTIP/PTIP (and Honeywell TIP) software structure. John Robinson's set is incomplete. Not in library.

protocols and algorithms, and in the Pluribus architecture itself running the Wideband Network application (PSAT). Topics: Congestion Control, Priority and Delay Class, End-to-End Flow Control, Pluribus Throughput.

"PSAT Technical Report", BBN Report No. 4469, G. Falk, S. Groff, R. Koolish, W. Milliken, May 1981. Reference document. Note: the Host Access Protocol (HAP) specification presented in Chapter 4, has been superceded by RFC 907, "Host Access Protocol Specification," July 1984. The revisions to the original specification are described as "minor" and include the definition of three new control message types (Loopback Request, Link Going Down, NOP), a "Reason" field in Restart Request control messages, new Unnumbered response codes, and new values for the setup codes used to manage streams and groups. HAP is described as an experimental protocol which will undergo further revision as new capabilities are added and/or different satellite networks are supported.

"OPSN Design Study -- Final Report," BBN Report No. 4772, G. Williams, P. Sevcik, A. Huang, September 1981. OPSN was the second all-Pluribus network installed at NSA.

"Technical Reports on the ARPANET Project." A bibliography of public documents produced by BBN about Pluribus-like machines and others as of January 1982. Issued by BBN Computer Systems Division. Does not include listings of internal documents, such as HSIMP notes or QTR's published after ARPA left the project. Most, but not all, of the documents selected for this multiprocessor bibliography are also listed with many others in the TRAP bibliography. The abstracts of the QTR's listed from 1969 to 1976 give a chronology of the IMP, TIP, Satellite IMP, HSIMP, and Pluribus IMP programs. Pluribus-related reports from BBN are also included in the "Other Reports" section of
the TRAP bibliography. Thanks go to M. Bremer and B. Brooks for forwarding copies of it.

