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INTRODUCTION 

In late 1968 the Advanced Research Projects Agency 
of the Department of Defense (ARPA) embarked on 
the implementation of a new type of computer network 
which would interconnect, via common-carrier circuits, 
a number of dissimilar computers at widely separated, 
ARPA-sponsored research centers. The primary purpose 
of this interconnection was resource sharing, whereby 
persons and programs at one research center might 
access data and interactively use programs that exist 
and run in other computers of the network. The inter
connection was to be realized using wideband leased 
lines and the technique of message switching, wherein a 
dedicated path is not set up between computers desiring 
to communicate, but instead the communication takes 
place through a sequence of messages each of which 
carries an address. A message generally traverses 
several network nodes in going from source to destina
tion, and at each node a copy of the message is stored 
until it is safely received at the following node. 

The ARPA Network has been in operation for over 
three years and has become a national facility. The 
network has grown to over thirty sites spread across the 
United States, and is steadily growing; over forty 
independent computer systems of varying manufacture 
are interconnected; provision has been made for terminal 
access to the network from sites which do not enjoy the 
ownership of an independent computer system; and 
there is world-wide excitement and interest in this type 
of network, with a number of derivative networks in 
their formative stages. A schematic map of the ARPA 
Network as of the fall of 1972 is shown in Figure 1. 

As can be seen from the map, each site in the ARPA 
Network consists of up to four independent computer 

systems (called Hosts) and one communications pro
cessor called an Interface Message Processor, or IMP. 
All of the Hosts at a site are directly connected to the 
IMP. Some IMPs also provide the ability to connect 
terminals directly to the network; these are called 
Terminal Interface Message Processors, or TIPs. The 
IMPs are connected together by wideband telephone 
lines and provide a subnet through which the Hosts 
communicate. Each IMP may be connected to as many 
as five other IMPs using telephone lines with band-
widths from 9.6 to 230.4 kilobits per second. The typical 
bandwidth is 50 kilobits. 

During these three years of network growth, the 
actual user traffic has been light and network per
formance under such light loads has been excellent. 
However, experimental traffic, as well as simulation 
studies, uncovered logical flaws in the IMP software 
which degraded performance at heavy loads. The soft
ware was therefore substantially modified in the spring 
of 1972. This paper is largely addressed to describing 
the new approaches which were taken. 

The first section of the paper considers some criteria 
of good network design and then presents our new 
algorithms in the areas of source-to-destination se
quence and flow control, as well as our new IMP-to-IMP 
acknowledgment strategy. The second section addresses 
changes in program structure; the third section re
evaluates the IMP's performance in light of these 
changes. The final section mentions some broader 
issues. 

The initial design of the ARPA Network and the 
IMP was described at the 1970 Spring Joint Computer 
Conference,1 and the TIP development was described 
at the 1972 Spring Joint Computer Conference.2 These 
papers are important background to a reading of the 
present paper. 
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Figure 1-—ARPA network, logical map, August 1972 

NEW ALGORITHMS 

A balanced design for a communication system should 
provide quick delivery of short interactive messages 
and high bandwidth for long files of data. The IMP 
program was designed to perform well under these 
bimodal traffic conditions. The experience of the first 
two and one half years of the ARPA Network's opera
tion indicated that the performance goal of low delay 
had been achieved. The lightly-loaded network de
livered short messages over several hops in about 
one-tenth of a second. Moreover, even under heavy 
load, the delay was almost always less than one-half 
second. The network also provided good throughput 
rates for long messages at light and moderate traffic 
levels. However, the throughput of the network de
graded significantly under heavy loads, so that the goal 
of high bandwidth had not been completely realized. 

We isolated a problem in the initial network design 
which led to degradation under heavy loads.3,4 This 
problem involves messages arriving at a destination 
IMP at a rate faster than they can be delivered to the 
destination Host. We call this reassembly congestion. 
Reassembly congestion leads to a condition we call 
reassembly lockup in which the destination IMP is 
incapable of passing any traffic to its Hosts. Our al
gorithm to prevent reassembly congestion and the 
related sequence control algorithm are described in 
the following subsections. 

We also found that the IMP and line bandwidth 
requirements for handling IMP-to-IMP traffic could be 
substantially reduced. Improvements in this area 

translate directly into increases in the maximum 
throughput rate that an IMP can maintain. Our new 
algorithm in this area is also given below. 

Source-to-destination flow control 

For efficiency, it is necessary to provide, somewhere 
in the network, a certain amount of buffering between 
the source and destination Hosts, preferably an amount 
equal to the bandwidth of the channel between the 
Hosts multiplied by the round trip time over the 
channel. The problem of flow control is to prevent 
messages from entering the network for which network 
buffering is not available and which could congest the 
network and lead to reassembly lockup, as illustrated 
in Figure 2. 

In Figure 2, IMP 1 is sending multi-packet messages 
to IMP 3; a lockup can occur when all the reassembly 
buffers in IMP 3 are devoted to partially reassembled 
messages A and B. Since IMP 3 has reserved all its 
remaining space for awaited packets of these partially 
reassembled messages, it can only take in those particu
lar packets from IMP 2. These outstanding packets, 
however, are two hops away in IMP 1. They cannot get 
through because IMP 2 is filled with store-and-forward 
packets of messages C, D, and E (destined for IMP 3) 
which IMP 3 cannot yet accept. Thus, IMP 3 will never 
be able to complete the reassembly of messages A 
and B. 

The original network design based source-to-destina
tion sequence and flow control on the link mechanism 
previously reported in References 1 and 5. Only a single 
message on a given link was permitted in the subnet
work at one time, and sequence numbers were used to 
detect duplicate messages on a given link. 

We were always aware that Hosts could defeat our 
flow control mechanism by "spraying" messages over an 
inordinately large number of links, but we counted on 
the nonmalicious behavior of the Hosts to keep the 

IMP 1 IMP 2 IMP 3 /-message A 

message B 
reassembly 

Figure 2—Reassembly lockup 
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number of links in use below the level at which problems 
occur. However, simulations and experiments artificially 
loading the network demonstrated that communication 
between a pair of Hosts on even a modest number of 
links could defeat our flow control mechanism; further, 
it could be defeated by a number of Hosts communi
cating with a common site even though each Host used 
only one link. Simulations3,4 showed that reassembly 
lockup may eventually occur when over five links to 
a particular Host are simultaneously in use. With ten 
or more links in use with multipacket messages, re
assembly lockup occurs almost instantly. 

If the buffering is provided in the source IMP, one 
can optimize for low delay transmissions. If the buffer
ing is provided at the destination IMP, one can optimize 
for high bandwidth transmissions. To be consistent 
with our view of a balanced communications system, 
we have developed an approach to reassembly con
gestion which utilizes some buffer storage at both the 
source and destination; our solution also utilizes a 
request mechanism from source IMP to destination 
IMP.* 

Specifically, no multipacket message is allowed to 
enter the network until storage for the message has been 
allocated at the destination IMP. As soon as the source 
IMP takes in the first packet of a multipacket message, 
it sends a small control message to the destination IMP 
requesting that reassembly storage be reserved at the 
destination for this message. It does not take in further 
packets from the Host until it receives an allocation 
message in reply. The destination IMP queues the 
request and sends the allocation message to the source 
IMP when enough reassembly storage is free; at this 
point the source IMP sends the message to the destina
tion. 

We maximize the effective bandwidth for sequences 
of long messages by permitting all but the first message 
to bypass the request mechanism. When the message 
itself arrives at the destination, and the destination 
IMP is about to return the Ready-For-Next-Message 
(RFNM), the destination IMP waits until it has room 
for an additional multipacket message. I t then piggy
backs a storage allocation on the RFNM. If the source 
Host is prompt in answering the RFNM with its next 
message, an allocation is ready and the message can be 
transmitted at once. If the source Host delays too long, or 
if the data transfer is complete, the source IMP returns 
the unused allocation to the destination. With this 
mechanism we have minimized the inter-message delay 

* This mechanism is similar to that implemented at the level of 
Host-to-Host protocol,6'7,8 indicative of the fact that the same 
sort of problems occur at every level in a communications system. 

and the Hosts can obtain the full bandwidth of the 
network. 

We minimize the delay for a short message by trans
mitting it to the destination immediately while keeping 
a copy in the source IMP. If there is space at the 
destination, it is accepted and passed on to a Host and 
a RFNM is returned; the source IMP discards the 
message when it receives the RFNM. If not, the 
message is discarded, a request for allocation is queued 
and, when space becomes available, the source IMP 
is notified that the message may now be retransmitted. 
Thus, no setup delay is incurred wThen storage is avail
able at the destination. 

The above mechanisms make the IMP network 
much less sensitive to unresponsive Hosts, since the 
source Host is effectively held to a transmission rate 
equal to the reception rate of the destination Host. 
Further, reassembly lockup is prevented because the 
destination IMP will never have to turn away a multi-
packet message destined for one of its Hosts, since 
reassembly storage has been allocated for each such 
message in the network. 

Source-to-destination sequence control 

In addition to its primary function as a flow control 
mechanism, the link mechanism also originally provided 
the basis for source-to-destination sequence control. 
Since only one message was permitted at a time on a 
link, messages on each link were kept in order; duplicates 
were detected by the sequence number maintained for 
each link. In addition, the IMPs marked any message 
less than 80 bits long as a priority message and gave it 
special handling to speed it across the network, placing 
it ahead of long messages on output queues. 

The tables associated with the link mechanism in 
each IMP were large and costly to access. Since the 
link mechanism was no longer needed for flow control, 
we felt that a less costly mechanism should be employed 
for sequence control. We thus decided to eliminate the 
link mechanism from the IMP subnetwork. RFNMs are 
still returned to the source Host on a link basis, but 
link numbers are used only to allow Hosts to identify 
messages. To replace the per-link sequence control 
mechanism, we decided upon a sequence control 
mechanism based on a single logical "pipe" between 
each source and destination IMP. Each IMP maintains 
an independent message number sequence for each 
pipe. A message number is assigned to each message at 
the source IMP and this message number is checked at 
the destination IMP. All Hosts at the source and 
destination IMPs share this message space. Out of an 
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eight-bit message number space (large enough to 
accommodate the settling time of the network), both 
the source and destination keep a small window of 
currently valid message numbers, which allows several 
messages to be in the pipe simultaneously. Messages 
arriving at a destination IMP with out-of-range message 
numbers are duplicates to be discarded. The window is 
presently four numbers wide, which seems about right 
considering the response time required of the network. 
The message number serves two purposes: it orders the 
four messages that can be in the pipe, and it allows 
detection of duplicates. The message number is internal 
to the IMP subnetwork and is invisible to the Hosts. 

A sequence control system based on a single source/ 
destination pipe, however, does not permit priority 
traffic to go ahead of other traffic. We solved this 
problem by permitting two pipes between each source 
and destination, a priority (or low delay) pipe and a 
nonpriority (or high bandwidth) pipe. To avoid having 
each IMP maintain two eight-bit message number 
sequences for every other IMP in the network, we 
coupled the low delay and high bandwidth pipe so that 
duplicate detection can be done in common, thus re-
quring only one eleven-bit message number sequence 
for each IMP. 

The eleven-bit number consists of a one-bit priority/ 
non-priority flag, two bits to order priority messages, 
and eight bits to order all messages. For example, if we 
use the letters A, B, C, and D to denote the two-bit 
order numbers for priority messages and the absence of 
a letter to indicate a nonpriority message, we can 
describe a typical situation as follows: The source IMP 
sends out nonpriority message 100, then priority 
messages 101A and 102B, and then nonpriority message 
103. Suppose the destination IMP receives these 
messages in the order 102B, 101A, 103, 100. It passes 
these messages to the Host in the order 101A, 102B, 
100, 103. Message number 100 could have been sent to 
the destination Host first if it had arrived at the 
destination first, but the priority messages are allowed 
to "leapfrog" ahead of message number 100 since it 
was delayed in the network. The IMP holds 102B until 
101A arrives, as the Host must receive priority message 
A before it receives priority message B. Likewise, 
message 100 must be passed to the Host before message 
103. 

Hosts may, if they choose, have several messages 
outstanding simultaneously to a given destination but, 
since priority messages can "leapfrog" ahead, and the 
last message in a sequence of long messages may be 
short, priority can no longer be assigned strictly on the 
basis of message length. Therefore, Hosts must ex
plicitly indicate whether a message has priority or not. 

With message numbers and reserved storage to be 
accurately accounted for, cleaning up in the event of a 
lost message must be done carefully. The source IMP 
keeps track of all messages for which a RFNM has not 
yet been received. When the RFNM is not received for 
too long (presently about 30 seconds), the source IMP 
sends a control message to the destination inquiring 
about the possibility of an incomplete transmission. 
The destination responds to this message by indicating 
whether the message in question was previously received 
or not. The source IMP continues inquiring until it 
receives a response. This technique guarantees that the 
source and destination IMPs keep their message 
number sequences synchronized and that any allocated 
space will be released in the rare case that a message is 
lost in the subnetwork because of a machine failure. 

IMP-to-IMP transmission control 

We have adopted a new technique for IMP-to-IMP 
transmission control which improves efficiency by 
10-20 percent over the original separate acknowl
edge/timeout/retransmission approach described in 
Reference 1. In the new scheme, which is also used for 
the Very Distant Host,9 and which is similar to Refer
ence 10, each physical network circuit is broken into a 
number of logical "channels," currently eight in each 
direction. Acknowledgments are returned "piggy
backed" on normal network traffic in a set of acknowl
edgment bits, one bit per channel, contained in every 
packet, thus requiring less bandwidth than our original 
method of sending each acknowledge in its own packet. 
The size of this saving is discussed later in the paper. In 
addition, the period between retransmissions has been 
made dependent upon the volume of new traffic. Under 
light loads the network has minimal retransmission 
delays, and the network automatically adjusts to 
minimize the interference of retransmissions with new 
traffic. 

Each packet is assigned to an outgoing channel and 
carries the "odd/even" bit for its channel (which is 
used to detect duplicate packet transmissions), its 
channel number, and eight acknowledge bits—one for 
each channel in the reverse direction. 

The transmitting IMP continually cycles through its 
used channels (those with packets associated with 
them), transmitting the packets along with the channel 
number and the associated odd/even bit. At the re
ceiving IMP, if the odd/even bit of the received packet 
does not match the odd/even bit associated with the 
appropriate receive channel, the packet is accepted and 
the receive odd/even bit is complemented, otherwise 
the packet is a duplicate and is discarded. 
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Every packet arriving over a line contains acknowl
edges for all eight channels. This is done by copying 
the receive odd/even bits into the positions reserved for 
the eight acknowledge bits in the control portion of 
every packet transmitted. In the absence of other 
traffic, the acknowledges are returned in "null packets" 
in which only the acknowledge bits contain relevant 
information (i.e., the channel number and odd/even bit 
are meaningless; null packets are not acknowledged). 
When an IMP receives a packet, it compares (bit by 
bit) the acknowledge bits against the transmit odd/even 
bits. For each match found, the corresponding channel 
is marked unused, the corresponding packet is dis
carded, and the transmit odd/even bit is complemented. 

In view of the large number of channels, and the 
delay that is encountered on long lines, some packets 
may have to wait an inordinately long time for trans
mission. We do not want a one-character packet to 
wait for several thousand-bit packets to be trans
mitted, multiplying by 10 or more the effective delay 
seen by the source. We have, therefore, instituted the 
following transmission ordering scheme: priority packets 
which have never been transmitted are sent first; next 
sent are any regular packets which have never been 
transmitted; finally, if there are no new packets to 
send, previously transmitted packets which are un
acknowledged are sent. Of course, unacknowledged 
packets are periodically retransmitted even when there 
is a continuous stream of new traffic. 

In implementing the new IMP-to-IMP acknowl
edgment system, we encountered a race problem. The 
strategy of continuously retransmitting a packet in the 
absence of other traffic introduced difficulties which 
were not encountered in the original system, which 
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Figure 3—Map of core storage 

retransmitted only after a long timeout. If an acknowl
edgment arrives for a packet which is currently being 
retransmitted, the output routine must prevent the 
input routine from freeing the packet. Without these 
precautions, the header and data in the packet could be 
changed while the packet was being retransmitted, and 
all kinds of "impossible" conditions result when this 
"composite" packet is received at the other end of the 
line. I t took us a long time to find this bug!* 

PROGRAM STRUCTURE 

Implementation of the IMPs required the develop
ment of a sophisticated computer program. This pro
gram was previously described in Reference 1. As 
stated then, the principal function of the IMP program 
is the processing of packets, including the following: 
segmentation of Host messages into packets; receiving, 
routing, and transmitting of store-and-forward packets; 
retransmitting unacknowledged packets; reassembling 
packets into messages for transmission into a Host; and 
generating RFNMs and other control messages. The 
program also monitors network status, gathers statis
tics, and performs on-line testing. The program was 
originally designed, constructed, and debugged over a 
period of about one year by three programmers. 

Recently, after about two and one-half years of 
operation in up to twenty-five IMPs throughout the 
network, the operational program was significantly 
modified. The modification implemented the algorithms 
described in the previous sections, thereby eliminating 
causes of network lockup and improving the per
formance of the IMP. The modification also extended 
the capabilities of the IMP so it can now interface to 
Hosts over common carrier circuits (a Very Distant 
Host9), efficiently manage buffers for lines with a wide 
range of speeds, and perform better network diagnostics. 
After prolonged study and preliminary design,3,4 this 
program revision was implemented and debugged in 
about nine man months. 

* Interestingly, a similar problem exists on another level, that of 
source-destination flow control. If an IMP sends a request for 
allocation, either single- or multi-packet, to a neighboring IMP, 
it will periodically retransmit it until it receives an acknowledg
ment. If it receives an allocation in return, it will immediately 
begin to transmit the first packet of the message. The implemen
tation in the IMP program sends the request from the same buffer 
as the first packet, merely marking it with a request bit. If an 
allocation arrives while the request is in the process of being 
retransmitted, the program must wait until it has been completely 
transmitted before it sends the same buffer again as the first 
packet, since the request bit, the odd/even bit, the acknowledge 
bits, and the message number (for a multipacket request) will be 
changed. This was another difficult bug. 
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We shall emphasize in this section the structural 
changes the program has recently undergone. 

Data structures 

Figure 3 shows the layout of core storage. As before, 
the program is broken into functionally distinct pieces, 
each of which occupies one or two pages of core. Notice 
that code is generally centered within a page, and there 
is code on every page of core. This is in contrast to our 
previous practice of packing code toward the beginning 
of pages and pages of code toward the beginning of 
memory. Although the former method results in a large 
contiguous buffer area near the end of memory, it has 
breakage at every page boundary. On the other hand, 
"centering" code in pages such that there are an integral 
number of buffers between the last word of code on one 
page and the first word of code on the next page 
eliminates almost all breakage. 

There are currently about forty buffers in the IMP, 
and the IMP program uses the following set of rules to 
allocate the available buffers to the various tasks re
quiring buffers: 

• Each line must be able to get its share of buffers for 
input and output. In particular, one buffer is 
always allocated for output on each line, guar
anteeing that output is always possible for each 
line; and double buffering is provided for input on 
each line, which permits all input traffic to be 
examined by the program, so that acknowledgments 
can always be processed, which frees buffers. 

• An attempt is made to provide enough store-and-
forward buffers so that all lines may operate at full 
capacity. The number of buffers needed depends 
directly on line distance and line speed. We cur
rently limit each line to eight or less buffers, 
and a pool is provided for all lines. Some numerical 
results on line utilization are presented in a later 
section. Currently, a maximum of twenty buffers is 
available in the store-and-forward pool. 

• Ten buffers are always allocated to reassembly 
storage, allowing allocations for one multipacket 
message and two single-packet messages. Addi
tional buffers may be claimed for reassembly, up 
to a maximum of twenty-six. 

Figure 4 summarizes the IMP table storage. All 
IMPs have identical tables. The IMP program has 
twelve words of tables for each of the sixty-four IMPs 
now possible in the network. The program has ninety-
one words of tables for each of the eight Hosts (four 

real and four fake) that can be connected; additionally, 
twelve words of code are replicated for each real Host 
that can be connected. The program has fifty-five 
words of tables for each of the five lines that can be 
connected; additionally, thirty-seven words of code are 
replicated for each line that can be connected. The 
program also has tables for initialization, statistics, 
trace, and so forth. 

The size of the initialization code and the associated 
tables deserves mention. This was originally quite 
small. However, as the network has grown and the 
IMP's capabilities have been expanded, the amount of 
memory dedicated to initialization has steadily grown. 
This is mainly due to the fact that the IMPs are no 
longer identical. An IMP may be required to handle a 
Very Distant Host, or TIP hardware, or five lines and 
two Hosts, or four Hosts and three lines, or a very high 
speed line, or, in the near future, a satellite link. As the 
physical permutations of the IMP have continued to 
increase, we have clung to the idea that the program 
should be identical in all IMPs, allowing an IMP to 
reload its program from a neighboring IMP and pro
viding other considerable advantages. However, main
taining only one version of the program means that the 
program must rebuild itself during initialization to be 
the proper program to handle the particular physical 
configuration of the IMP. Furthermore, it must be able 
to turn itself back into its nominal form when it is 
reloaded into a neighbor. All of this takes tables and 
code. Unfortunately, we did not foresee the proliferation 

HOSTS (8) 

IMPS (64) 

LINES(5) 

INITIALIZATION 

STATISTICS 

TRACE 

REASSEMBLY 

ALLOCATE 

HEADER 

BACKGROUND 

TIME OUT 

WORDS 

500 

J _ J L_L T 
ICODE 
1 

1 
TABLES I CODE 

824 

768 

460 

150 

106 

88 

60 

56 

52 

32 

28 

Figure 4—Allocation of IMP table storage 



Improvements in Design and Performance of ARPA Network 747 

TO / ^ ^ 
HOSTS \ 

Teletype 

f f - TTY * 
I • -Debugs 

\ Trace 
Parameters* 
•Statistics 
\Discard-J 

\ 

^ 

reassembly^ 
logic \ ^ 

^ 

receive 
allocate 

logic 
/packets-

replies-^ 

BACKGROUND.. 

single packet 
messages-

\ / 

i allocated 

^request 1 

FROM (\ ,rf'--:|-->LP^g!g=LJ l O F I 
HOSTS \v H~i J_Jr>-.-j::: / , „_, ' 11T o $ k r 

\ 

Modem 
Task 

FROM 

\ acknowledged 
\ packets 
r\duplicate \ receive • 

/ \packets \acks-H 

Y /MODEM 

\ vi 
CD \— 

\ / requests-̂  V replies-̂  | 

^ /^Kv allocate l n \ l o c q |-^VVS/F / 
'' \r i\ RFNM1-1 1 ^ TASK / ^ -Rout ing / 

r*~3ir jyRFNBT; \ / 
* y i allocates x . . ^ 

\ ~] transmit 
acks 

multi-packet-^ / Allocates 
messaaes transmit-7 UHOCUIM 

^ Modem 
Out 

allocate logic 

P I QUEUE 0 DERIVED 
L—' PACKET 

CHOICE ( ) ROUTINE 

/ \ TO 
/MODEM* 

Figure 5—Packet flow and processing 

of IMP configurations which has taken place; therefore, 
we cannot conveniently compute the program differ
ences from a simple configuration key. Instead, we must 
explicitly table the configuration irregularities. 

The packet processing routines 

Figure 5 is a schematic drawing of packet flow and 
packet processing.* We here briefly review the functions 
of the various packet-processing routines and note 
important new features. 

Host-to-IMP (H-*I) 

This routine handles messages being transmitted 
from Hosts at the local site. These Hosts may either be 
real Hosts or fake Hosts (TTY, Debug, etc.). The 
routine acquires a message number for each message 
and passes the message through the transmi allocation 
logic which requests a reassembly allocation from the 
destination IMP. Once this allocation is received, the 
message is broken into packets which are passed to the 
Task routine via the Host Task queue. 

Task 

Cf. Figure 9 of Reference 1. 

This routine directs packets to their proper destina
tion. Packets for a local Host are passed through the 

file:///Discard-J
file:///packets
file:///acks-H
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reassembly logic. When reassembly is complete, the 
reassembled message is passed to the IMP-to-Host 
routine via the Host Out queue. Certain control 
messages for the local IMP are passed to the transmit or 
receive allocate logic. Packets to other destinations are 
placed on a modem output queue as specified by the 
routing table. 

IMP-to-Modem (I-*M) 

This routine transmits successive packets from the 
modem output queues and sends piggybacked acknowl
edgments for packets correctly received by the Modem-
to-IMP routine and accepted by the Task routine. 

Modem-to-IMP (M-*I) 

This routine handles inputs from modems and passes 
correctly received packets to the Task routine via the 
Modem Task queue. This routine also processes in
coming piggybacked acknowledges and causes the 
buffers for correctly acknowledged packets to be freed. 

IMP-to-Host ( M H ) 

This routine passes messages to local Hosts and 
informs the background routine when a RFNM should 
be returned to the source Host. 

Background 

The function of this routine includes handling the 
IMP's console Teletype, a debugging program, the 
statistics programs, the trace program, and several 
routines which generate control messages. The programs 
which perform the first four functions run as fake 
Hosts (as described in Reference 1). These routines 
simulate the operation of the Host/IMP data channel 
hardware so the Host-to-IMP and IMP-to-Host routines 
are unaware they are communicating with anything 
other than a real Host. This trick saved a large amount 
of code and we have come to use it more and more. The 
programs which send incomplete transmission messages, 
send and return allocations, and send RFNMs also 
reside in the background program. However, these 
programs run in a slightly different manner than the 
fake Hosts in that they do not simulate the Host/IMP 
channel hardware. In fact, they do not go through the 
Host/IMP code at all, but rather put their messages 
directly on the task queue. Nonetheless, the principle 
is the same. 

Timeout 

This routine, which is not shown in Figure 5, performs 
a number of periodic functions. One of these functions 
is garbage collection. Every table, most queues, and 
many states of the program are timed out. Thus, if an 
entry remains in a table abnormally long or if a routine 
remains in a particular state for abnormally long, this 
entry or state is garbage-collected and the table or 
routine is returned to its initial or nominal state. In 
this way, abnormal conditions are not allowed to hang 
up the system indefinitely. 

The method frequently used by the Timeout routine 
to scan a table is interesting. Suppose, for example, 
every entry in a sixty-four entry table must be looked 
at every now and then. Timeout could wait the proper 
interval and then look at every entry in the table on 
one pass. However, this would cause a severe transient 
in the timing of the IMP program as a whole. Instead, 
one entry is looked at each time through the Timeout 
routine. This takes a little more total time but is much 
less disturbing to the program as a whole. In particular, 
worst case timing problems (for instance, the processing 
time between the end of one modem input and the 
beginning of the next) are significantly reduced by 
this technique. A particular example of the use of this 
technique is with the transmission of routing informa
tion to the IMP's neighbors. In general, an IMP can 
have five neighbors. Therefore, it sends routing in
formation to one of its neighbors every 125 msec rather 
than to all of its neighbors every 625 msec. 

In addition to timing out various states of the pro
gram, the Timeout routine is used.to awaken routines 
which have put themselves to sleep for a specified 
period. Typically these routines are waiting or some 
resource to become available, and are written as co
routines with the Timeout routine. When they are 
restarted by Timeout the test is made for the avail
ability of the resource, followed by another delay if the 
resource is not yet available. 

PERFORMANCE EVALUATION 

In view of the extensive modifications described in 
the preceding sections, it was appropriate to recalculate 
the IMP's performance capabilities. The following 
section presents the results of the reevaluation of the 
IMP's performance and comparisons with the per
formance reports of Reference 1. 

Throughput vs. message length 

In this section we recalculate two measures of IMP 
performance previously calculated in Reference 1, the 
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maximum throughput and line traffic. Throughput is 
the number of Host data bits that traverse an IMP each 
second. Line traffic is the number of bits that an IMP 
transmits on its communication circuits per second and 
includes the overhead of RFNMs, packet headers, 
acknowledges, framing characters, and checksum 
characters. 

To calculate the IMP's maximum line traffic and 
throughput, we first calculate the computational load 
placed on the IMP by the processing of one message. 
The computational load is the sum of the machine 
instruction cycles plus the input/output cycles required 
to process all the packets of a message and their ac
knowledgments, and the message's RFNM and its 
acknowledgment. For simplicity in computing the 
computational load, we ignore the processing required 
to send and receive the message from a Host since this 
is only seen by the source and destination IMPs. 

A packet has D bits of data, S bits of software 
overhead, and H bits of hardware overhead. For the 
original and modified IMP systems, the values of D, 
S, and H are: 

Original 

D 0-1008 bits 
S 64(packet) +80(ack) = 

144 bits 
H 72 (packet) +72 (ack) = 

144 bits 

Modified 

0-1008 bits 
80 bits (packet+ack) 

72 bits (packet+ack) 

The input/output processing time for a packet is the 
time taken to transfer D + # bits from memory to the 
modem interface at one IMP plus the time to transfer 
D+S bits into memory at the other IMP. If .R is the 
input/output transfer rate in bits per second,* then the 
input/output transfer time for a packet is 2(D-\-S)/R. 
Therefore, the total input/output time, Im, for P packets 
in a B bit message is 2(B-\-PXS)/R. The input/output 
transfer time, Ir, for a RFNM is 2S/R. 

To each of these numbers we must add the program 
processing time, C; this is about the same for a packet 
of a message and a RFNM. 

* In this calculation we will be making the distinction between the 
516 IMP (used originally and reported on in Reference 1) and the 
316 IMP (used for all new IMPs). The 516 has a memory cycle 
time of 0.96 /tsec, and the 316 has a cycle of 1.6 /usee. The 316 
provides a two-cycle data break, in comparison with the four-cycle 
data break on the 516. Thus, the input/output transfer rates are 
16 bits per 3.84 /zsec for the 516 and 16 bits per 3.2 /*sec for the 316. 

For the original IMP program, the program processing 
time per packet consisted of the following: 

Modem Output 100 cycles Send out packet 
Modem Input 100 cycles Receive packet at other 

IMP 
Task 150 cycles Process it (route onto an 

output line) 
Modem Output 100 cycles Send back an acknowl

edgment 
Modem Input 100 cycles Receive acknowledgment 

at first IMP 
Task 150 cycles Process acknowledgment 

700 cycles Program processing time 
per packet 

For the modified IMP program, the program pro
cessing time consists of: 

Modem Output 150 cycles Send out packet and 
piggyback acks 

Modem Input 150 cycles Receive packet and pro
cess acks 

Task 250 cycles Process packet 

550 cycles Program processing time 
per packet 

Finally, we add a percentage, V, for overhead for 
the various periodic processes in the IMP (primarily 
the routing computation) which take processor band
width. V is presently about 5 percent. 

We are now in a position to calculate the computa
tional load (in seconds), L, of one P packet message: 

L= ( P X C + I J X U + F) + . ( C + 7 r ) X ( l + 7 ) 

packets RFNM 

The maximum throughput, T, is the number of data 
bits in a single message divided by the computational 
loads of the message; that is, T = B/L. 

The maximum line traffic (in bits per second), R, 
is the throughput plus the overhead bits for the packets 
of the message and the RFNM divided by the com
putational load of the message. That is, 

R = T+ 
( P + l ) X (S+H) B+ ( P + l ) X (S+H) 

The maximum throughput and line traffic are plotted 
for various message lengths in Figure 6 for the original 
and modified programs and for the 516 IMP and the 
316 IMP. 
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Figure 6—Line traffic and throughput vs. message length. The 
upper curves plot maximum line traffic, the lower curves plot 

maximum throughput 

The changes to the IMP system can be summarized 
as follows: 

• The program processing time for a store-and-
forward packet has been decreased by 20 percent. 

• The line throughput has been increased by 4 
percent for a 516 IMP and by 7 percent for a 316 
IMP. 

As a result, the net throughput rate has been increased 
by 17 percent for a 516 IMP and by 21 percent for a 
316 IMP. Thus, a 316 IMP can now process almost as 
much traffic as a 516 IMP could with the old program. 
A 516 IMP can now process approximately 850 Kbs. 

• The line overhead on a full-length packet has been 
decreased from 29 percent to 16 percent. 

As a result, the effective capacity of the telephone 
circuits has been increased from thirty-eight full packet 
messages per second on a 50 Kbs line to forty-three full 
packet messages per second. 

Round trip delay vs. message length 

In this section we compute the minimum round trip 
delay encountered by a message. We define round trip 
delay as in Reference 1; that is, the delay until the 
message's RFNM arrives back at the destination IMP. 
A message has P packets and travels over H hops. The 
first packet encounters delay due to the packet pro
cessing time, C; the transmission delay, TP; and the 
propagation delay, L. Each successive packet of the 
message follows C+TP behind the previous packet. 
Since the message's RFNM is a single packet message 
with a transmission delay, TR, we can write the total 
delay as 

HX(C+TP+L) + (P-1)X(C+TP)+HX(C+TB+L) 

first packet successive RFNM 

packets 

For single packet messages, this reduces to 

2H{C+L)+H{TP+TR) 

The curves of Figure 7 show minimum round-trip 
delay through the network for a range of message 
lengths and hop numbers, and for two sets of line speeds 
and line lengths. These curves agree with experimental 
data.11-12 
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Figure 7—Minimum round trip delay vs. message length. 
Curves show delay for 1-6 hops 

Line utilization 

The number of buffers required to keep a communica
tions circuit fully loaded is a function not only of line 
bandwidth and distance but also of packet length, IMP 
delay, and acknowledgment strategy. In order to 
compute the buffering needed to keep a line busy, we 
need to know the length of time the sending IMP must 
wait between sending out a packet and receiving an 
acknowledgment for it. If we assume no line errors, 
this time is the sum of: propagation delays for the 
packet and its acknowledgment, Pp and PA; trans
mission delays for the packet and its acknowledgment, 
TP and TA; and the IMP processing delay before the 
acknowledgment is sent. Thus, the number of buffers 
needed to fully utilize a line is (Pp-\-TP-\-L-\-PA+ 
TA)/TP. 

Since Pp=PA, the expression for the number of 
buffers can be rewritten: 

TP TP 

That is, the number of buffers needed to keep a line 
full is proportional to the length of the line and its 
speed, and inversely proportional to the packet size, 
with the addition of a constant term. 

To compute Tp, we must take into account the mix of 
short and long packets. Thus, we write 

TP = 
xTs+yTL 

x+y 

where x to y is the ratio of number of short packets to 
number of long packets and Ts and TL are the trans
mission delays incurred by short and long packets, 
respectively. The shortest packet permitted is 152 bits 
long (entirely overhead); the longest packet is 1160 
bits long. Computing Ts and TL for any given line band
width is a simple matter; they typically range from 
106 /xsec for Ts on a 1.4 Mbs line to 120.5 msec for TL 

on a 9.6 Kbs line. 
Assuming worst case IMP processing delay (that is, 

the acknowledge becomes ready for transmission just 
as the first bit of a maximum length packet is sent), 
L = TL. 

The acknowledge returns in the next outgoing packet 
at the other IMP, which we assume is of "average" 
size:* 

TA = 
Ts+TL 

Propagation delay, P, is essentially just "speed of 

* Variations of this assumption have only second order effects on 
the computation of the number of buffers required. 
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Figure 8—Number of buffers for full line utilization. Traffic mixes 
are shown as the ratio of number of short packets (S) to number 

of long packets (L) 

light" delay, and ranges from 50 //sec for short lines, 
through 20 msec for a cross country line, to 275 msec 
for a satellite link. 

We can now compute the number of buffers required 
to fully utilize a line for any line speed, line length, and 
traffic mix. Figure 8 gives the result for typical speeds, 
lengths, and mixes. Note that the knee of the curves 
occurs at progressively shorter d'stances with increasing 
line speeds. The constant term dominates the 9.6 Kbs 
case, and it is almost insignificant for the 1.4 Mbs case. 
Note also that the separation between members of each 
family of curves remains constant on the log scale, 
indicating greatly increased variations with distance. 

GENERAL COMMENTS 

The ARPA Network has represented a fundamental 
development in the intersection of computers and 
communications. Many derivative activities are pro
ceeding with considerable energy, and we list here some 
of the important directions: 

• The present network is expanding, adding IMP 
and T IP nodes at rates approaching two per 
month. Other government agencies are initiating 
efforts to use the network, and increasing rates of 
growth are likely. As befits the growing opera
tional character of the ARPA Network, ARPA is 
making efforts to transfer the network from under 
ARPA's research and development auspices to an 
operational agency or a specialized carrier of some 
sort. 

• Technical improvements in the existing network 
are continuing. Arrangements have now been made 
to permit Host-IMP connections at distances 
over 2000 feet by use of common-carrier circuits. 
Arrangements are being made to allow the con
nection of remote-job-entry terminals to a TIP. 
In the software area, the routing algorithms are 
still inadequate at heavy load levels, and further 
changes in these algorithms are in progress. A 
major effort is under way to develop an IMP 
which can cope with megabit/second circuits and 
higher terminal throughput. This new "high speed 
modular I M P " will be based on a minicomputer, 
multiprocessor design; a prototype will be com
pleted in 1973. 

• The network is being expanded to include satellite 
links to oversea nodes, and an entirely new ap
proach is being investigated for the "multi-access" 
use of satellite channels by message switched 
digital communication systems.13 This work could 
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lead to major changes in world-wide digital com
munications. 

• Many similar networks are being designed by-
other groups, both in the United States and in 
other countries. These groups are reviewing the 
myriad detailed design choices that must be made 
in the design of message switched systems, and a 
wide understanding of such networks is growing. 

• The existence of the ARPA Network is encouraging 
a serious review of approaches to obtaining new 
computer resources. It is now possible to consider 
investing in major resources, because a national, or 
even international, network clientele is available 
over which to amortize the cost of such major 
resources. 

• Perhaps most important, the network has catalyzed 
important computer research into how programs 
and operating systems should communicate with 
each other, and this research will hopefully lead 
to improved use of all computers. 

The ARPA Network has been an exciting develop
ment, and there is much yet left to learn. 
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