
Improvements in the design and
performance of the ARPA network

by J. M. McQUILLAN, W. R. CROWTHER, B. P. COSELL, D. C. WALDEN, and
F. E. HEART

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

INTRODUCTION

In late 1968 the Advanced Research Projects Agency
of the Department of Defense (ARPA) embarked on
the implementation of a new type of computer network
which would interconnect, via common-carrier circuits,
a number of dissimilar computers at widely separated,
ARPA-sponsored research centers. The primary purpose
of this interconnection was resource sharing, whereby
persons and programs at one research center might
access data and interactively use programs that exist
and run in other computers of the network. The inter
connection was to be realized using wideband leased
lines and the technique of message switching, wherein a
dedicated path is not set up between computers desiring
to communicate, but instead the communication takes
place through a sequence of messages each of which
carries an address. A message generally traverses
several network nodes in going from source to destina
tion, and at each node a copy of the message is stored
until it is safely received at the following node.

The ARPA Network has been in operation for over
three years and has become a national facility. The
network has grown to over thirty sites spread across the
United States, and is steadily growing; over forty
independent computer systems of varying manufacture
are interconnected; provision has been made for terminal
access to the network from sites which do not enjoy the
ownership of an independent computer system; and
there is world-wide excitement and interest in this type
of network, with a number of derivative networks in
their formative stages. A schematic map of the ARPA
Network as of the fall of 1972 is shown in Figure 1.

As can be seen from the map, each site in the ARPA
Network consists of up to four independent computer

systems (called Hosts) and one communications pro
cessor called an Interface Message Processor, or IMP.
All of the Hosts at a site are directly connected to the
IMP. Some IMPs also provide the ability to connect
terminals directly to the network; these are called
Terminal Interface Message Processors, or TIPs. The
IMPs are connected together by wideband telephone
lines and provide a subnet through which the Hosts
communicate. Each IMP may be connected to as many
as five other IMPs using telephone lines with band-
widths from 9.6 to 230.4 kilobits per second. The typical
bandwidth is 50 kilobits.

During these three years of network growth, the
actual user traffic has been light and network per
formance under such light loads has been excellent.
However, experimental traffic, as well as simulation
studies, uncovered logical flaws in the IMP software
which degraded performance at heavy loads. The soft
ware was therefore substantially modified in the spring
of 1972. This paper is largely addressed to describing
the new approaches which were taken.

The first section of the paper considers some criteria
of good network design and then presents our new
algorithms in the areas of source-to-destination se
quence and flow control, as well as our new IMP-to-IMP
acknowledgment strategy. The second section addresses
changes in program structure; the third section re
evaluates the IMP's performance in light of these
changes. The final section mentions some broader
issues.

The initial design of the ARPA Network and the
IMP was described at the 1970 Spring Joint Computer
Conference,1 and the TIP development was described
at the 1972 Spring Joint Computer Conference.2 These
papers are important background to a reading of the
present paper.

741

742 Fall Joint Computer Conference, 1972

Figure 1-—ARPA network, logical map, August 1972

NEW ALGORITHMS

A balanced design for a communication system should
provide quick delivery of short interactive messages
and high bandwidth for long files of data. The IMP
program was designed to perform well under these
bimodal traffic conditions. The experience of the first
two and one half years of the ARPA Network's opera
tion indicated that the performance goal of low delay
had been achieved. The lightly-loaded network de
livered short messages over several hops in about
one-tenth of a second. Moreover, even under heavy
load, the delay was almost always less than one-half
second. The network also provided good throughput
rates for long messages at light and moderate traffic
levels. However, the throughput of the network de
graded significantly under heavy loads, so that the goal
of high bandwidth had not been completely realized.

We isolated a problem in the initial network design
which led to degradation under heavy loads.3,4 This
problem involves messages arriving at a destination
IMP at a rate faster than they can be delivered to the
destination Host. We call this reassembly congestion.
Reassembly congestion leads to a condition we call
reassembly lockup in which the destination IMP is
incapable of passing any traffic to its Hosts. Our al
gorithm to prevent reassembly congestion and the
related sequence control algorithm are described in
the following subsections.

We also found that the IMP and line bandwidth
requirements for handling IMP-to-IMP traffic could be
substantially reduced. Improvements in this area

translate directly into increases in the maximum
throughput rate that an IMP can maintain. Our new
algorithm in this area is also given below.

Source-to-destination flow control

For efficiency, it is necessary to provide, somewhere
in the network, a certain amount of buffering between
the source and destination Hosts, preferably an amount
equal to the bandwidth of the channel between the
Hosts multiplied by the round trip time over the
channel. The problem of flow control is to prevent
messages from entering the network for which network
buffering is not available and which could congest the
network and lead to reassembly lockup, as illustrated
in Figure 2.

In Figure 2, IMP 1 is sending multi-packet messages
to IMP 3; a lockup can occur when all the reassembly
buffers in IMP 3 are devoted to partially reassembled
messages A and B. Since IMP 3 has reserved all its
remaining space for awaited packets of these partially
reassembled messages, it can only take in those particu
lar packets from IMP 2. These outstanding packets,
however, are two hops away in IMP 1. They cannot get
through because IMP 2 is filled with store-and-forward
packets of messages C, D, and E (destined for IMP 3)
which IMP 3 cannot yet accept. Thus, IMP 3 will never
be able to complete the reassembly of messages A
and B.

The original network design based source-to-destina
tion sequence and flow control on the link mechanism
previously reported in References 1 and 5. Only a single
message on a given link was permitted in the subnet
work at one time, and sequence numbers were used to
detect duplicate messages on a given link.

We were always aware that Hosts could defeat our
flow control mechanism by "spraying" messages over an
inordinately large number of links, but we counted on
the nonmalicious behavior of the Hosts to keep the

IMP 1 IMP 2 IMP 3 /-message A

message B
reassembly

Figure 2—Reassembly lockup

Improvements in Design and Performance of ARPA Network 743

number of links in use below the level at which problems
occur. However, simulations and experiments artificially
loading the network demonstrated that communication
between a pair of Hosts on even a modest number of
links could defeat our flow control mechanism; further,
it could be defeated by a number of Hosts communi
cating with a common site even though each Host used
only one link. Simulations3,4 showed that reassembly
lockup may eventually occur when over five links to
a particular Host are simultaneously in use. With ten
or more links in use with multipacket messages, re
assembly lockup occurs almost instantly.

If the buffering is provided in the source IMP, one
can optimize for low delay transmissions. If the buffer
ing is provided at the destination IMP, one can optimize
for high bandwidth transmissions. To be consistent
with our view of a balanced communications system,
we have developed an approach to reassembly con
gestion which utilizes some buffer storage at both the
source and destination; our solution also utilizes a
request mechanism from source IMP to destination
IMP.*

Specifically, no multipacket message is allowed to
enter the network until storage for the message has been
allocated at the destination IMP. As soon as the source
IMP takes in the first packet of a multipacket message,
it sends a small control message to the destination IMP
requesting that reassembly storage be reserved at the
destination for this message. It does not take in further
packets from the Host until it receives an allocation
message in reply. The destination IMP queues the
request and sends the allocation message to the source
IMP when enough reassembly storage is free; at this
point the source IMP sends the message to the destina
tion.

We maximize the effective bandwidth for sequences
of long messages by permitting all but the first message
to bypass the request mechanism. When the message
itself arrives at the destination, and the destination
IMP is about to return the Ready-For-Next-Message
(RFNM), the destination IMP waits until it has room
for an additional multipacket message. I t then piggy
backs a storage allocation on the RFNM. If the source
Host is prompt in answering the RFNM with its next
message, an allocation is ready and the message can be
transmitted at once. If the source Host delays too long, or
if the data transfer is complete, the source IMP returns
the unused allocation to the destination. With this
mechanism we have minimized the inter-message delay

* This mechanism is similar to that implemented at the level of
Host-to-Host protocol,6'7,8 indicative of the fact that the same
sort of problems occur at every level in a communications system.

and the Hosts can obtain the full bandwidth of the
network.

We minimize the delay for a short message by trans
mitting it to the destination immediately while keeping
a copy in the source IMP. If there is space at the
destination, it is accepted and passed on to a Host and
a RFNM is returned; the source IMP discards the
message when it receives the RFNM. If not, the
message is discarded, a request for allocation is queued
and, when space becomes available, the source IMP
is notified that the message may now be retransmitted.
Thus, no setup delay is incurred wThen storage is avail
able at the destination.

The above mechanisms make the IMP network
much less sensitive to unresponsive Hosts, since the
source Host is effectively held to a transmission rate
equal to the reception rate of the destination Host.
Further, reassembly lockup is prevented because the
destination IMP will never have to turn away a multi-
packet message destined for one of its Hosts, since
reassembly storage has been allocated for each such
message in the network.

Source-to-destination sequence control

In addition to its primary function as a flow control
mechanism, the link mechanism also originally provided
the basis for source-to-destination sequence control.
Since only one message was permitted at a time on a
link, messages on each link were kept in order; duplicates
were detected by the sequence number maintained for
each link. In addition, the IMPs marked any message
less than 80 bits long as a priority message and gave it
special handling to speed it across the network, placing
it ahead of long messages on output queues.

The tables associated with the link mechanism in
each IMP were large and costly to access. Since the
link mechanism was no longer needed for flow control,
we felt that a less costly mechanism should be employed
for sequence control. We thus decided to eliminate the
link mechanism from the IMP subnetwork. RFNMs are
still returned to the source Host on a link basis, but
link numbers are used only to allow Hosts to identify
messages. To replace the per-link sequence control
mechanism, we decided upon a sequence control
mechanism based on a single logical "pipe" between
each source and destination IMP. Each IMP maintains
an independent message number sequence for each
pipe. A message number is assigned to each message at
the source IMP and this message number is checked at
the destination IMP. All Hosts at the source and
destination IMPs share this message space. Out of an

744 Fall Joint Computer Conference, 1972

eight-bit message number space (large enough to
accommodate the settling time of the network), both
the source and destination keep a small window of
currently valid message numbers, which allows several
messages to be in the pipe simultaneously. Messages
arriving at a destination IMP with out-of-range message
numbers are duplicates to be discarded. The window is
presently four numbers wide, which seems about right
considering the response time required of the network.
The message number serves two purposes: it orders the
four messages that can be in the pipe, and it allows
detection of duplicates. The message number is internal
to the IMP subnetwork and is invisible to the Hosts.

A sequence control system based on a single source/
destination pipe, however, does not permit priority
traffic to go ahead of other traffic. We solved this
problem by permitting two pipes between each source
and destination, a priority (or low delay) pipe and a
nonpriority (or high bandwidth) pipe. To avoid having
each IMP maintain two eight-bit message number
sequences for every other IMP in the network, we
coupled the low delay and high bandwidth pipe so that
duplicate detection can be done in common, thus re-
quring only one eleven-bit message number sequence
for each IMP.

The eleven-bit number consists of a one-bit priority/
non-priority flag, two bits to order priority messages,
and eight bits to order all messages. For example, if we
use the letters A, B, C, and D to denote the two-bit
order numbers for priority messages and the absence of
a letter to indicate a nonpriority message, we can
describe a typical situation as follows: The source IMP
sends out nonpriority message 100, then priority
messages 101A and 102B, and then nonpriority message
103. Suppose the destination IMP receives these
messages in the order 102B, 101A, 103, 100. It passes
these messages to the Host in the order 101A, 102B,
100, 103. Message number 100 could have been sent to
the destination Host first if it had arrived at the
destination first, but the priority messages are allowed
to "leapfrog" ahead of message number 100 since it
was delayed in the network. The IMP holds 102B until
101A arrives, as the Host must receive priority message
A before it receives priority message B. Likewise,
message 100 must be passed to the Host before message
103.

Hosts may, if they choose, have several messages
outstanding simultaneously to a given destination but,
since priority messages can "leapfrog" ahead, and the
last message in a sequence of long messages may be
short, priority can no longer be assigned strictly on the
basis of message length. Therefore, Hosts must ex
plicitly indicate whether a message has priority or not.

With message numbers and reserved storage to be
accurately accounted for, cleaning up in the event of a
lost message must be done carefully. The source IMP
keeps track of all messages for which a RFNM has not
yet been received. When the RFNM is not received for
too long (presently about 30 seconds), the source IMP
sends a control message to the destination inquiring
about the possibility of an incomplete transmission.
The destination responds to this message by indicating
whether the message in question was previously received
or not. The source IMP continues inquiring until it
receives a response. This technique guarantees that the
source and destination IMPs keep their message
number sequences synchronized and that any allocated
space will be released in the rare case that a message is
lost in the subnetwork because of a machine failure.

IMP-to-IMP transmission control

We have adopted a new technique for IMP-to-IMP
transmission control which improves efficiency by
10-20 percent over the original separate acknowl
edge/timeout/retransmission approach described in
Reference 1. In the new scheme, which is also used for
the Very Distant Host,9 and which is similar to Refer
ence 10, each physical network circuit is broken into a
number of logical "channels," currently eight in each
direction. Acknowledgments are returned "piggy
backed" on normal network traffic in a set of acknowl
edgment bits, one bit per channel, contained in every
packet, thus requiring less bandwidth than our original
method of sending each acknowledge in its own packet.
The size of this saving is discussed later in the paper. In
addition, the period between retransmissions has been
made dependent upon the volume of new traffic. Under
light loads the network has minimal retransmission
delays, and the network automatically adjusts to
minimize the interference of retransmissions with new
traffic.

Each packet is assigned to an outgoing channel and
carries the "odd/even" bit for its channel (which is
used to detect duplicate packet transmissions), its
channel number, and eight acknowledge bits—one for
each channel in the reverse direction.

The transmitting IMP continually cycles through its
used channels (those with packets associated with
them), transmitting the packets along with the channel
number and the associated odd/even bit. At the re
ceiving IMP, if the odd/even bit of the received packet
does not match the odd/even bit associated with the
appropriate receive channel, the packet is accepted and
the receive odd/even bit is complemented, otherwise
the packet is a duplicate and is discarded.

Improvements in Design and Performance of ARPA Network 745

Every packet arriving over a line contains acknowl
edges for all eight channels. This is done by copying
the receive odd/even bits into the positions reserved for
the eight acknowledge bits in the control portion of
every packet transmitted. In the absence of other
traffic, the acknowledges are returned in "null packets"
in which only the acknowledge bits contain relevant
information (i.e., the channel number and odd/even bit
are meaningless; null packets are not acknowledged).
When an IMP receives a packet, it compares (bit by
bit) the acknowledge bits against the transmit odd/even
bits. For each match found, the corresponding channel
is marked unused, the corresponding packet is dis
carded, and the transmit odd/even bit is complemented.

In view of the large number of channels, and the
delay that is encountered on long lines, some packets
may have to wait an inordinately long time for trans
mission. We do not want a one-character packet to
wait for several thousand-bit packets to be trans
mitted, multiplying by 10 or more the effective delay
seen by the source. We have, therefore, instituted the
following transmission ordering scheme: priority packets
which have never been transmitted are sent first; next
sent are any regular packets which have never been
transmitted; finally, if there are no new packets to
send, previously transmitted packets which are un
acknowledged are sent. Of course, unacknowledged
packets are periodically retransmitted even when there
is a continuous stream of new traffic.

In implementing the new IMP-to-IMP acknowl
edgment system, we encountered a race problem. The
strategy of continuously retransmitting a packet in the
absence of other traffic introduced difficulties which
were not encountered in the original system, which

^
^
^ TASK REASSEMBLY
^ 1 TASK REPLY

E
a

COMMON STORE
RELOAD I DIAGNOSTICS

INITIALIZATION [TABLES
BACKGROUND"

TASK STORE 8 FORWARD I ^ N N >

^ I
MODEM TO IMP I ^ ^ S S S ^

IMP TO MODEM
HOST TO IMP

^

1

HOST TO IMP T ~ 1
SSS? IMP TO HOST
$$$$ IMP TO HOST
> ^ 1 TIMEOUT M

^
S

NCC REPORTS fc^^^SS^
DEBUG
TTY E

5 ROUTING 1 ^ ^ ^
STATISTICS

§

STATISTICS
l > ^ ^ ^ ^ ^

MESSAGE TABLES. ALLOCATE TABLES ^
ROUTING TABLES

VERY DISTANT HOST E ^

S 24 PAGES

I PAGE =512 WORDS

BUFFER STORAGE

PROTECTED PAGE

Figure 3—Map of core storage

retransmitted only after a long timeout. If an acknowl
edgment arrives for a packet which is currently being
retransmitted, the output routine must prevent the
input routine from freeing the packet. Without these
precautions, the header and data in the packet could be
changed while the packet was being retransmitted, and
all kinds of "impossible" conditions result when this
"composite" packet is received at the other end of the
line. I t took us a long time to find this bug!*

PROGRAM STRUCTURE

Implementation of the IMPs required the develop
ment of a sophisticated computer program. This pro
gram was previously described in Reference 1. As
stated then, the principal function of the IMP program
is the processing of packets, including the following:
segmentation of Host messages into packets; receiving,
routing, and transmitting of store-and-forward packets;
retransmitting unacknowledged packets; reassembling
packets into messages for transmission into a Host; and
generating RFNMs and other control messages. The
program also monitors network status, gathers statis
tics, and performs on-line testing. The program was
originally designed, constructed, and debugged over a
period of about one year by three programmers.

Recently, after about two and one-half years of
operation in up to twenty-five IMPs throughout the
network, the operational program was significantly
modified. The modification implemented the algorithms
described in the previous sections, thereby eliminating
causes of network lockup and improving the per
formance of the IMP. The modification also extended
the capabilities of the IMP so it can now interface to
Hosts over common carrier circuits (a Very Distant
Host9), efficiently manage buffers for lines with a wide
range of speeds, and perform better network diagnostics.
After prolonged study and preliminary design,3,4 this
program revision was implemented and debugged in
about nine man months.

* Interestingly, a similar problem exists on another level, that of
source-destination flow control. If an IMP sends a request for
allocation, either single- or multi-packet, to a neighboring IMP,
it will periodically retransmit it until it receives an acknowledg
ment. If it receives an allocation in return, it will immediately
begin to transmit the first packet of the message. The implemen
tation in the IMP program sends the request from the same buffer
as the first packet, merely marking it with a request bit. If an
allocation arrives while the request is in the process of being
retransmitted, the program must wait until it has been completely
transmitted before it sends the same buffer again as the first
packet, since the request bit, the odd/even bit, the acknowledge
bits, and the message number (for a multipacket request) will be
changed. This was another difficult bug.

746 Fall Joint Computer Conference, 1972

We shall emphasize in this section the structural
changes the program has recently undergone.

Data structures

Figure 3 shows the layout of core storage. As before,
the program is broken into functionally distinct pieces,
each of which occupies one or two pages of core. Notice
that code is generally centered within a page, and there
is code on every page of core. This is in contrast to our
previous practice of packing code toward the beginning
of pages and pages of code toward the beginning of
memory. Although the former method results in a large
contiguous buffer area near the end of memory, it has
breakage at every page boundary. On the other hand,
"centering" code in pages such that there are an integral
number of buffers between the last word of code on one
page and the first word of code on the next page
eliminates almost all breakage.

There are currently about forty buffers in the IMP,
and the IMP program uses the following set of rules to
allocate the available buffers to the various tasks re
quiring buffers:

• Each line must be able to get its share of buffers for
input and output. In particular, one buffer is
always allocated for output on each line, guar
anteeing that output is always possible for each
line; and double buffering is provided for input on
each line, which permits all input traffic to be
examined by the program, so that acknowledgments
can always be processed, which frees buffers.

• An attempt is made to provide enough store-and-
forward buffers so that all lines may operate at full
capacity. The number of buffers needed depends
directly on line distance and line speed. We cur
rently limit each line to eight or less buffers,
and a pool is provided for all lines. Some numerical
results on line utilization are presented in a later
section. Currently, a maximum of twenty buffers is
available in the store-and-forward pool.

• Ten buffers are always allocated to reassembly
storage, allowing allocations for one multipacket
message and two single-packet messages. Addi
tional buffers may be claimed for reassembly, up
to a maximum of twenty-six.

Figure 4 summarizes the IMP table storage. All
IMPs have identical tables. The IMP program has
twelve words of tables for each of the sixty-four IMPs
now possible in the network. The program has ninety-
one words of tables for each of the eight Hosts (four

real and four fake) that can be connected; additionally,
twelve words of code are replicated for each real Host
that can be connected. The program has fifty-five
words of tables for each of the five lines that can be
connected; additionally, thirty-seven words of code are
replicated for each line that can be connected. The
program also has tables for initialization, statistics,
trace, and so forth.

The size of the initialization code and the associated
tables deserves mention. This was originally quite
small. However, as the network has grown and the
IMP's capabilities have been expanded, the amount of
memory dedicated to initialization has steadily grown.
This is mainly due to the fact that the IMPs are no
longer identical. An IMP may be required to handle a
Very Distant Host, or TIP hardware, or five lines and
two Hosts, or four Hosts and three lines, or a very high
speed line, or, in the near future, a satellite link. As the
physical permutations of the IMP have continued to
increase, we have clung to the idea that the program
should be identical in all IMPs, allowing an IMP to
reload its program from a neighboring IMP and pro
viding other considerable advantages. However, main
taining only one version of the program means that the
program must rebuild itself during initialization to be
the proper program to handle the particular physical
configuration of the IMP. Furthermore, it must be able
to turn itself back into its nominal form when it is
reloaded into a neighbor. All of this takes tables and
code. Unfortunately, we did not foresee the proliferation

HOSTS (8)

IMPS (64)

LINES(5)

INITIALIZATION

STATISTICS

TRACE

REASSEMBLY

ALLOCATE

HEADER

BACKGROUND

TIME OUT

WORDS

500

J _ J L_L T
ICODE
1

1
TABLES I CODE

824

768

460

150

106

88

60

56

52

32

28

Figure 4—Allocation of IMP table storage

Improvements in Design and Performance of ARPA Network 747

TO / ^ ^
HOSTS \

Teletype

f f - TTY *
I • -Debugs

\ Trace
Parameters*
•Statistics
\Discard-J

\

^

reassembly^
logic \ ^

^

receive
allocate

logic
/packets-

replies-^

BACKGROUND..

single packet
messages-

\ /

i allocated

^request 1

FROM (\ ,rf'--:|-->LP^g!g=LJ l O F I
HOSTS \v H~i J_Jr>-.-j::: / , „_, ' 11T o $ k r

\

Modem
Task

FROM

\ acknowledged
\ packets
r\duplicate \ receive •

/ \packets \acks-H

Y /MODEM

\ vi
CD \—

\ / requests-̂ V replies-̂ |

^ /^Kv allocate l n \ l o c q |-^VVS/F /
'' \r i\ RFNM1-1 1 ^ TASK / ^ -Rout ing /

r*~3ir jyRFNBT; \ /
* y i allocates x . . ^

\ ~] transmit
acks

multi-packet-^ / Allocates
messaaes transmit-7 UHOCUIM

^ Modem
Out

allocate logic

P I QUEUE 0 DERIVED
L—' PACKET

CHOICE () ROUTINE

/ \ TO
/MODEM*

Figure 5—Packet flow and processing

of IMP configurations which has taken place; therefore,
we cannot conveniently compute the program differ
ences from a simple configuration key. Instead, we must
explicitly table the configuration irregularities.

The packet processing routines

Figure 5 is a schematic drawing of packet flow and
packet processing.* We here briefly review the functions
of the various packet-processing routines and note
important new features.

Host-to-IMP (H-*I)

This routine handles messages being transmitted
from Hosts at the local site. These Hosts may either be
real Hosts or fake Hosts (TTY, Debug, etc.). The
routine acquires a message number for each message
and passes the message through the transmi allocation
logic which requests a reassembly allocation from the
destination IMP. Once this allocation is received, the
message is broken into packets which are passed to the
Task routine via the Host Task queue.

Task

Cf. Figure 9 of Reference 1.

This routine directs packets to their proper destina
tion. Packets for a local Host are passed through the

file:///Discard-J
file:///packets
file:///acks-H

748 Fall Joint Computer Conference, 1972

reassembly logic. When reassembly is complete, the
reassembled message is passed to the IMP-to-Host
routine via the Host Out queue. Certain control
messages for the local IMP are passed to the transmit or
receive allocate logic. Packets to other destinations are
placed on a modem output queue as specified by the
routing table.

IMP-to-Modem (I-*M)

This routine transmits successive packets from the
modem output queues and sends piggybacked acknowl
edgments for packets correctly received by the Modem-
to-IMP routine and accepted by the Task routine.

Modem-to-IMP (M-*I)

This routine handles inputs from modems and passes
correctly received packets to the Task routine via the
Modem Task queue. This routine also processes in
coming piggybacked acknowledges and causes the
buffers for correctly acknowledged packets to be freed.

IMP-to-Host (M H)

This routine passes messages to local Hosts and
informs the background routine when a RFNM should
be returned to the source Host.

Background

The function of this routine includes handling the
IMP's console Teletype, a debugging program, the
statistics programs, the trace program, and several
routines which generate control messages. The programs
which perform the first four functions run as fake
Hosts (as described in Reference 1). These routines
simulate the operation of the Host/IMP data channel
hardware so the Host-to-IMP and IMP-to-Host routines
are unaware they are communicating with anything
other than a real Host. This trick saved a large amount
of code and we have come to use it more and more. The
programs which send incomplete transmission messages,
send and return allocations, and send RFNMs also
reside in the background program. However, these
programs run in a slightly different manner than the
fake Hosts in that they do not simulate the Host/IMP
channel hardware. In fact, they do not go through the
Host/IMP code at all, but rather put their messages
directly on the task queue. Nonetheless, the principle
is the same.

Timeout

This routine, which is not shown in Figure 5, performs
a number of periodic functions. One of these functions
is garbage collection. Every table, most queues, and
many states of the program are timed out. Thus, if an
entry remains in a table abnormally long or if a routine
remains in a particular state for abnormally long, this
entry or state is garbage-collected and the table or
routine is returned to its initial or nominal state. In
this way, abnormal conditions are not allowed to hang
up the system indefinitely.

The method frequently used by the Timeout routine
to scan a table is interesting. Suppose, for example,
every entry in a sixty-four entry table must be looked
at every now and then. Timeout could wait the proper
interval and then look at every entry in the table on
one pass. However, this would cause a severe transient
in the timing of the IMP program as a whole. Instead,
one entry is looked at each time through the Timeout
routine. This takes a little more total time but is much
less disturbing to the program as a whole. In particular,
worst case timing problems (for instance, the processing
time between the end of one modem input and the
beginning of the next) are significantly reduced by
this technique. A particular example of the use of this
technique is with the transmission of routing informa
tion to the IMP's neighbors. In general, an IMP can
have five neighbors. Therefore, it sends routing in
formation to one of its neighbors every 125 msec rather
than to all of its neighbors every 625 msec.

In addition to timing out various states of the pro
gram, the Timeout routine is used.to awaken routines
which have put themselves to sleep for a specified
period. Typically these routines are waiting or some
resource to become available, and are written as co
routines with the Timeout routine. When they are
restarted by Timeout the test is made for the avail
ability of the resource, followed by another delay if the
resource is not yet available.

PERFORMANCE EVALUATION

In view of the extensive modifications described in
the preceding sections, it was appropriate to recalculate
the IMP's performance capabilities. The following
section presents the results of the reevaluation of the
IMP's performance and comparisons with the per
formance reports of Reference 1.

Throughput vs. message length

In this section we recalculate two measures of IMP
performance previously calculated in Reference 1, the

Improvements in Design and Performance of ARPA Network 749

maximum throughput and line traffic. Throughput is
the number of Host data bits that traverse an IMP each
second. Line traffic is the number of bits that an IMP
transmits on its communication circuits per second and
includes the overhead of RFNMs, packet headers,
acknowledges, framing characters, and checksum
characters.

To calculate the IMP's maximum line traffic and
throughput, we first calculate the computational load
placed on the IMP by the processing of one message.
The computational load is the sum of the machine
instruction cycles plus the input/output cycles required
to process all the packets of a message and their ac
knowledgments, and the message's RFNM and its
acknowledgment. For simplicity in computing the
computational load, we ignore the processing required
to send and receive the message from a Host since this
is only seen by the source and destination IMPs.

A packet has D bits of data, S bits of software
overhead, and H bits of hardware overhead. For the
original and modified IMP systems, the values of D,
S, and H are:

Original

D 0-1008 bits
S 64(packet) +80(ack) =

144 bits
H 72 (packet) +72 (ack) =

144 bits

Modified

0-1008 bits
80 bits (packet+ack)

72 bits (packet+ack)

The input/output processing time for a packet is the
time taken to transfer D + # bits from memory to the
modem interface at one IMP plus the time to transfer
D+S bits into memory at the other IMP. If .R is the
input/output transfer rate in bits per second,* then the
input/output transfer time for a packet is 2(D-\-S)/R.
Therefore, the total input/output time, Im, for P packets
in a B bit message is 2(B-\-PXS)/R. The input/output
transfer time, Ir, for a RFNM is 2S/R.

To each of these numbers we must add the program
processing time, C; this is about the same for a packet
of a message and a RFNM.

* In this calculation we will be making the distinction between the
516 IMP (used originally and reported on in Reference 1) and the
316 IMP (used for all new IMPs). The 516 has a memory cycle
time of 0.96 /tsec, and the 316 has a cycle of 1.6 /usee. The 316
provides a two-cycle data break, in comparison with the four-cycle
data break on the 516. Thus, the input/output transfer rates are
16 bits per 3.84 /zsec for the 516 and 16 bits per 3.2 /*sec for the 316.

For the original IMP program, the program processing
time per packet consisted of the following:

Modem Output 100 cycles Send out packet
Modem Input 100 cycles Receive packet at other

IMP
Task 150 cycles Process it (route onto an

output line)
Modem Output 100 cycles Send back an acknowl

edgment
Modem Input 100 cycles Receive acknowledgment

at first IMP
Task 150 cycles Process acknowledgment

700 cycles Program processing time
per packet

For the modified IMP program, the program pro
cessing time consists of:

Modem Output 150 cycles Send out packet and
piggyback acks

Modem Input 150 cycles Receive packet and pro
cess acks

Task 250 cycles Process packet

550 cycles Program processing time
per packet

Finally, we add a percentage, V, for overhead for
the various periodic processes in the IMP (primarily
the routing computation) which take processor band
width. V is presently about 5 percent.

We are now in a position to calculate the computa
tional load (in seconds), L, of one P packet message:

L= (P X C + I J X U + F) + . (C + 7 r) X (l + 7)

packets RFNM

The maximum throughput, T, is the number of data
bits in a single message divided by the computational
loads of the message; that is, T = B/L.

The maximum line traffic (in bits per second), R,
is the throughput plus the overhead bits for the packets
of the message and the RFNM divided by the com
putational load of the message. That is,

R = T+
(P + l) X (S+H) B+ (P + l) X (S+H)

The maximum throughput and line traffic are plotted
for various message lengths in Figure 6 for the original
and modified programs and for the 516 IMP and the
316 IMP.

750 Fall Joint Computer Conference, 1972

2 c. 230.4 Kb
200 - 100 Miles

150 -

100 -

MESSAGE LENGTH (PACKETS)

Figure 6—Line traffic and throughput vs. message length. The
upper curves plot maximum line traffic, the lower curves plot

maximum throughput

The changes to the IMP system can be summarized
as follows:

• The program processing time for a store-and-
forward packet has been decreased by 20 percent.

• The line throughput has been increased by 4
percent for a 516 IMP and by 7 percent for a 316
IMP.

As a result, the net throughput rate has been increased
by 17 percent for a 516 IMP and by 21 percent for a
316 IMP. Thus, a 316 IMP can now process almost as
much traffic as a 516 IMP could with the old program.
A 516 IMP can now process approximately 850 Kbs.

• The line overhead on a full-length packet has been
decreased from 29 percent to 16 percent.

As a result, the effective capacity of the telephone
circuits has been increased from thirty-eight full packet
messages per second on a 50 Kbs line to forty-three full
packet messages per second.

Round trip delay vs. message length

In this section we compute the minimum round trip
delay encountered by a message. We define round trip
delay as in Reference 1; that is, the delay until the
message's RFNM arrives back at the destination IMP.
A message has P packets and travels over H hops. The
first packet encounters delay due to the packet pro
cessing time, C; the transmission delay, TP; and the
propagation delay, L. Each successive packet of the
message follows C+TP behind the previous packet.
Since the message's RFNM is a single packet message
with a transmission delay, TR, we can write the total
delay as

HX(C+TP+L) + (P-1)X(C+TP)+HX(C+TB+L)

first packet successive RFNM

packets

For single packet messages, this reduces to

2H{C+L)+H{TP+TR)

The curves of Figure 7 show minimum round-trip
delay through the network for a range of message
lengths and hop numbers, and for two sets of line speeds
and line lengths. These curves agree with experimental
data.11-12

Improvements in Design and Performance of ARPA Network 751

1000

a. 516 IMP
Original System

b. 516 IMP
Modified System

J I I

c. 316 IMP
Original System
J 1 I

d. 316 IMP H
Modified System

1 2 3 4 5 6 7

MESSAGE LENGTH (PACKETS)

Figure 7—Minimum round trip delay vs. message length.
Curves show delay for 1-6 hops

Line utilization

The number of buffers required to keep a communica
tions circuit fully loaded is a function not only of line
bandwidth and distance but also of packet length, IMP
delay, and acknowledgment strategy. In order to
compute the buffering needed to keep a line busy, we
need to know the length of time the sending IMP must
wait between sending out a packet and receiving an
acknowledgment for it. If we assume no line errors,
this time is the sum of: propagation delays for the
packet and its acknowledgment, Pp and PA; trans
mission delays for the packet and its acknowledgment,
TP and TA; and the IMP processing delay before the
acknowledgment is sent. Thus, the number of buffers
needed to fully utilize a line is (Pp-\-TP-\-L-\-PA+
TA)/TP.

Since Pp=PA, the expression for the number of
buffers can be rewritten:

TP TP

That is, the number of buffers needed to keep a line
full is proportional to the length of the line and its
speed, and inversely proportional to the packet size,
with the addition of a constant term.

To compute Tp, we must take into account the mix of
short and long packets. Thus, we write

TP =
xTs+yTL

x+y

where x to y is the ratio of number of short packets to
number of long packets and Ts and TL are the trans
mission delays incurred by short and long packets,
respectively. The shortest packet permitted is 152 bits
long (entirely overhead); the longest packet is 1160
bits long. Computing Ts and TL for any given line band
width is a simple matter; they typically range from
106 /xsec for Ts on a 1.4 Mbs line to 120.5 msec for TL

on a 9.6 Kbs line.
Assuming worst case IMP processing delay (that is,

the acknowledge becomes ready for transmission just
as the first bit of a maximum length packet is sent),
L = TL.

The acknowledge returns in the next outgoing packet
at the other IMP, which we assume is of "average"
size:*

TA =
Ts+TL

Propagation delay, P, is essentially just "speed of

* Variations of this assumption have only second order effects on
the computation of the number of buffers required.

752 Fall Joint Computer Conference, 1972

1000

100

= I M 1111if—i i 11 I I I I I — i I i m i i | — i i i i n i i | — i i 11 i tu

z9.6 ki lobits/sec

1S:0L
— • 8S:1L

10

, I I I I m i l l i i i i m i l i i i m i l l i i i m i l l i i i i n n
1 10 100 1000 10,000 4 5 , 0 0 0

1000

100

= i i i MINI—i i i mii|

z 50 ki lobits/sec

10

<r
UJ
L-
LL.

CO

Li.

o
tr
Ui
CD
5
Z3

i i i mm—i i i mil l—i .i 111re

r ' i mini ' i " i nn i i i nun i i i i in i l—i i m m
1 10 100 1000 10,000 4 5 , 0 0 0

looob i i i I I I I I I—i i i mill—i i i I I I I I I— i i i mil l—i i y n u

E230.4 k i lobi ts/sec

100

i ' " i l ml i i i m i l l [I I l l l l l l 1 I I I I 111
1 10 100 1000 10,000 45 ,000

1000 E I i i I I I I I I— i 11IIIIII—i 11mill i i i i m i | / M WMH

11,400 ki lobits/sec * / / / / -

100

• •••••' • • • •••"'• '• • " • " • ' — i i i m i l l — ' i n i m
10 100 1 0 0 0 10,000 45 ,000

LINE LENGTH (MILES)

Figure 8—Number of buffers for full line utilization. Traffic mixes
are shown as the ratio of number of short packets (S) to number

of long packets (L)

light" delay, and ranges from 50 //sec for short lines,
through 20 msec for a cross country line, to 275 msec
for a satellite link.

We can now compute the number of buffers required
to fully utilize a line for any line speed, line length, and
traffic mix. Figure 8 gives the result for typical speeds,
lengths, and mixes. Note that the knee of the curves
occurs at progressively shorter d'stances with increasing
line speeds. The constant term dominates the 9.6 Kbs
case, and it is almost insignificant for the 1.4 Mbs case.
Note also that the separation between members of each
family of curves remains constant on the log scale,
indicating greatly increased variations with distance.

GENERAL COMMENTS

The ARPA Network has represented a fundamental
development in the intersection of computers and
communications. Many derivative activities are pro
ceeding with considerable energy, and we list here some
of the important directions:

• The present network is expanding, adding IMP
and T IP nodes at rates approaching two per
month. Other government agencies are initiating
efforts to use the network, and increasing rates of
growth are likely. As befits the growing opera
tional character of the ARPA Network, ARPA is
making efforts to transfer the network from under
ARPA's research and development auspices to an
operational agency or a specialized carrier of some
sort.

• Technical improvements in the existing network
are continuing. Arrangements have now been made
to permit Host-IMP connections at distances
over 2000 feet by use of common-carrier circuits.
Arrangements are being made to allow the con
nection of remote-job-entry terminals to a TIP.
In the software area, the routing algorithms are
still inadequate at heavy load levels, and further
changes in these algorithms are in progress. A
major effort is under way to develop an IMP
which can cope with megabit/second circuits and
higher terminal throughput. This new "high speed
modular I M P " will be based on a minicomputer,
multiprocessor design; a prototype will be com
pleted in 1973.

• The network is being expanded to include satellite
links to oversea nodes, and an entirely new ap
proach is being investigated for the "multi-access"
use of satellite channels by message switched
digital communication systems.13 This work could

Improvements in Design and Performance of ARPA Network 753

lead to major changes in world-wide digital com
munications.

• Many similar networks are being designed by-
other groups, both in the United States and in
other countries. These groups are reviewing the
myriad detailed design choices that must be made
in the design of message switched systems, and a
wide understanding of such networks is growing.

• The existence of the ARPA Network is encouraging
a serious review of approaches to obtaining new
computer resources. It is now possible to consider
investing in major resources, because a national, or
even international, network clientele is available
over which to amortize the cost of such major
resources.

• Perhaps most important, the network has catalyzed
important computer research into how programs
and operating systems should communicate with
each other, and this research will hopefully lead
to improved use of all computers.

The ARPA Network has been an exciting develop
ment, and there is much yet left to learn.

ACKNOWLEDGMENTS

Dr. Lawrence G. Roberts and others in the ARPA
office have been a continuing source of encouragement
and support. The entire "IMP group" at Bolt Beranek
and Newman Inc. has participated in the development,
installation, test, and maintenance of the IMP sub
network. In addition, Dr. Robert E. Kahn of Bolt
Beranek and Newman Inc. was deeply involved in the
isolation of certain network weaknesses and in the
formative stages of the corrective algorithms. Alex
McKenzie made many useful suggestions during the
writing of this paper. Linda Ebersole helped with the
production of the manuscript.

REFERENCES

1 F E HEART R E KAHN S M ORNSTEIN
W R CROWTHER D C WALDEN
The interface message processor for the ARPA computer
network
Proceedings of AFIPS 1970 Spring Joint Computer
Conference Vol 36 pp 551-567

2 S M ORNSTEIN F E HEART W R CROWTHER
H K RISING S B RUSSELL A MICHEL
The terminal IMP for the ARPA computer network
Proceedings of AFIPS 1972 Spring Joint Computer
Conference Vol 40 pp 243-254

3 R E KAHN W R CROWTHER
A study of the ARPA network design and performance
Report No 2161 Bolt Beranek and Newman Inc August
1971

4 R E KAHN W R CROWTHER
Flow control in a resource sharing computer network
Proceedings of the Second ACM IEEE Symposium on
Problems in the Optimization of Data Communications
Systems Palo Alto California October 1971 pp 108-116

5 F HEART S M ORNSTEIN
Software and logic design interaction in computer networks
Infotech Computer State of the Art Report No 6 Computer
Networks 1971

6 S CARR S CROCKER V CERF
Host/host protocol in the ARPA network
Proceedings of AFIPS 1970 Spring Joint Computer
Conference Vol 36 pp 589-597

7 S CROCKER J HEAFNER R METCALFE
J POSTEL
Function-oriented protocols for the ARPA network
Proceedings of AFIPS 1972 Spring Joint Computer
Conference Vol 40 pp 271-280

8 A McKENZIE
Host/host protocol for the ARPA network
Available from the Network Information Center as NIC
8246 at Stanford Research Institute Menlo Park California
94025

9 Specifications for the interconnection of a host and an IMP
Bolt Beranek and Newman Inc Report No 1822 revised
April 1972

10 K BARTLETT R SCANTLEBURY
P WILKINSON
A note on reliable full-duplex transmission over half duplex
links
Communications of the ACM 12 5 May 1969 pp 260-261

11 G D COLE
Computer networks measurements techniques and experiments
UCLA-ENG-7165 Computer Science Department School of
Engineering and Applied Science University of California at
Los Angeles October 1971

12 G D COLE
Performance measurements on the ARPA computer network
Proceedings of the Second ACM IEEE Symposium on
Problems in the Optimization of Data Communications
Systems Palo Alto California October 1971 pp 39-45

13 N ABRAMSON
The ALOHA system—Another alternative for computer
communications
Proceedings of AFIPS 1970 Fall Joint Computer Conference
Vol 37 pp 281-285

SUPPLEMENTARY BIBLIOGRAPHY

(The following describe issues related to, but not directly
concerned with, those discussed in the text.)

H FRANK I T FRISCH W CHOU
Topological considerations in the design of the ARPA computer
network
Proceedings of AFIPS 1970 Spring Joint Computer Conference
Vol 36 pp 581-587
H FRANK R E KAHN L KLEINROCK
Computer communication network design—Experience with theory
and practice
Proceedings of AFIPS 1972 Spring Joint Computer Conference
Vol 40 pp 255-270

754 Fall Joint Computer Conference, 1972

R E KAHN
Terminal access to the ARPA computer network
Courant Computer Symposium 3—Computer Networks
Courant Institute New York November 1970
L KLEINROCK
Analytic and simulation methods in computer network design
Proceedings of AFIPS 1970 Spring Joint Computer Conference
Vol 36 pp 569-579
A A MCKENZIE B P COSELL J M MCQUILLAN
M J THROPE
The network control center for the ARPA network
To be presented at the International Conference on Computer
Communications Washington D C October 1972

L G ROBERTS
Extension of packet communication technology to a hand-held
personal terminal
Proceedings of AFIPS 1972 Spring Joint Computer Conference
Vol 40 pp 295-298
L G ROBERTS B D WESSLER
Computer network development to achieve resource sharing
Proceedings of AFIPS 1970 Spring Joint Computer Conference
Vol 36 pp 543-549
R THOMAS D A HENDERSON
McROSS—A multi-computer programming system
Proceedings of AFIPS 1972 Spring Joint Computer Conference
Vol 40 pp 281-294

