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ABSTRACT
Techniques are presented for analyzin% the multiErogramming structure of a
system and for verifying that a system does not contain any multiprogram-
ming bugs.

INTRODUCTION

Multiprogrammin% bugs are those which can cccur when two processes within a
system attempt Lo modify a variable simultaneuuslg or when one process interferes
with the control structure of another by incorrectly sharing a subroutine with it.
These bugs ocecur in multiprﬂcessin% systems, where the conflicting processes are
truly concurrent, as well as in multiprogramming systems, where only one process
can be active at a time. A bug of this type is frequently very difficult to
locate because neither process can detect any anomaly. Furthermore, since a fail-
ure caused by such a bug depends on the coincident timing of the conflicting ro-
cesses, 4 allure may occur onl{ once a minute, once an hour, or even less fre-
quently. Also, problems often will not show up until the next time the variable
i? tgeferenﬂed, which may occur long after and far removed from the actual source
o] e fault.

Dijkstra and others (1968) have done much theoretical work on the general
problem of coordinating independent processes. However, when execution speed and
program size are eritical factors, the general procedures the§ developed are too
expensive to use every time a variable is referenced. Further, in many environ-
ments the actual protection techniques available are fairly straiﬁhtforward. It
is our belief, then, that what is needed is not further work on automatice" pro-
tection schemes, but rather techniques for identifyinﬁ those portions of a program
which actually reguire protection, thereby allowing the remainder of the program
to be left unencumbered. Our work has focussed on these practical problems within
the context of assembly language programming for small, real-time systems.

We concentrate for the most part on interrupt-based systems because this is
the environment with which we are most familiar and in which we have done the most
analysis. Conceptually, however, all multipro%ramming systems merely simulate a
multiprocessing system. The primary attribute of such systems is the requirement
for rapid  response to external events. Interrupts are the most common architec-
ture WLEE which sucﬁ systems are constructed. Although the techniques we have

developed are designed for interrupt-driven systems, they apply with little sig-
nificant modification to the entire spectrum of multiprogramming systems.

As an example of a common interrupt bug, consider a system in which there
is a loop to process data and an interrupt routine to service an input device sup-
plylng he data. The routines communicate by means of a variable which is incre-
mented by the interrupt routine each time a datum arrives and is decremented by
the processing loop each time a datum is processed. The variable is zero when the
system is idle, indicating that there 1s no data waiting to be processed., Now,
let us hypothesize that the interrupt routine and the processing loop look some-

thing like:

INTERRUPT: SAVE ACCUMULATOR
LOAD VARIABLE
INCREMENT ACCUMULATOR
STORE INTO VARIABLE
RESTORE ACCUMULATOR
EXIT

LOOP: LOAD VARIABLE
TEST ACCUMULATOR EQUAL TO ZERO
IFS0O GOTO LOOP
DECREMENT ACCUMULATOR
STORE INTO VARIABLE
PROCESS A DATUM
GOTO LOOP

An observant systems programmer will notice that the above routine, as simple as
it is, contains an "interrupt bug". Assume that the variable has some value, n.
If a datum arrives just after the LOAD VARIABLE instruction, an interrupt will
occur and the interrupt routine will inerement the variable to n+1. When the loop
is resumed, the now-incorrect value of n will be restored to the accumulator and
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will get decremented, and instead of containing n at the beginning of the next
loop, the variable will contain n=1; a datum will have been lost.

One way to fix this bug is to rewrite the processing loop as follows:

LOCP: DISABLE INTERRUPT SYSTEM
LOAD VARIABLE
TEST ACCUMULATOR EQUAL TO ZERQ
IFS0O GOTO ENAB
DECREMENT ACCUMULATOR
STORE INTO VARIAELE
ENABLE INTERRUPT SYSTEM
PROCESS A DATUM (we assume no confliet here)
GOTO LOOP

ENAB: ENABLE INTERRUPT SYSTEM
GOTO LOOP

The variable is being shared between two routines, and for a small portion of the
time its value is ‘"incorrect": from the LOAD until the STORE. During this
period, the interrupt routine must be prevented from running and using the iIncor-
rect value of the variable, and the simplest way to do this is just to disable the
entire interrupt system, preventing all interrupts.

A fairly simple rule suggests itself: if any routine modifies a shared
variable, it must prevent any other routine from using the variable while it is
being changed. This rule is the erux of interrupt programming.

A SYSTEMATIC APPROACH

The first steg in_understanding a system is to determine its interrupt
structure, which usually follows from an analysis of the desired response charac-
teristics of the system and its I/0 devices, "This will result in a directed graph
in which the nodes correspond to the interrupt routines and the arcs indicate
which routines should not be interrupted by which others, For typical computers,
the interrupt system will constrain this structure to be linear, but in others a
full graph is realizable.

In our particular case, although the computer in faet poses no constraints,
we chose to implement a linear system. There are two primary reasons for this
choice, First, more complicated structures offer little, if any, advantage over a
linear system, Second, the interrelationships of the interrupt routines become
much more camglieated when structure is non-linear. Except as noted, for the
remainder of this paper we will deal exclusively with linear interrupt structures.
The approaches and analyses can be carried over to more complicated structures
giir%g easily, but in doing so the rules we deseribe will rapid y become very dif-

cult.

: The next step is to identify the system’s interrupt routines. This identi-
fication is usually a simfle matter of starting at each interrupt entrance and
tracing out the contro paths until the interrupt exits are reached. Non-
reentrant shared code and subroutines are treated as though they were variables;
that 1is, the technigues described below for dealing with variagles are afglied to
determine an "effective interrupt level™ for the code or subroutine, and then the
analysis Eroceeds as though the code were actually a part of the level thus deter-
mined, the procedure repeated iteratively until all of the code in the system has
been associated with an interrupt.

_For each variable in the system, the hi%heat priority routine which refer-
ences 1t may do so with impunity. However, al lower routines must take care that
thE{ are not interrupted while modifying the variable in question. If the lower
routines lock out interrupts at (and implicitly below) the level of the highest
routine, they will be assured error-free access to the variable*, Thus, for each
variable we must determine an "effective interrupt level™ the 1level at which
interrupts must be disabled (either implicitly by being the interrupt routine at
that level or explicitly in lower levels) to guarantee safe access. ¢ do this
examine each such element and determine which routines share it. The "highest
pyiﬁrltg" routine is the one which cannot be interrupted b{ any of the other rou-
tines sharing the element; its level is assigned to the element.

In an existing system, locating an interrupt bug probably requires some
degree of insi%ht into the structure of the program. Nonetheless, by methodical
application of the above rules, it is possible to verify the structure of an
entire sgstem and discover any bugs present in it. In fact, for some bugs this
may be the fastest way to locate them.

* It is primarily the absence of this property that makes non-linear structures
difficult to deal with,
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If we number the interrupt levels so that a given level can be interrupted
by all lower-numbered levels and implicitly inhibits all higher-numbered levels,
then the effective (or '"hardware") levels we have just assigned are simply the
lowest numbered levels which use each element, Now, when any higher numbered rou-
tine uses an element, it must at least disable interrupts up to that level,
Notice that what the routine 1is actually doing is making itself appear to the
interrupt system as though it were the lower numbered interrupt. Thus, one can
view the situation as being that the lower prioritg routine has, through software,
"hecome™ a higher priority routine. We refer to this procedure as making the rou-
tine modify its "software'

The hardware level of a routine reflects which routines it can interrupt,
and the software level indicates which routines are ErevenEeﬁ from inﬁérrﬁﬁggyg
it., At the point of the interrupt entry, ese levels are 2 same, and a routine

¢an neither alter its hardware level nor make its software level higher than its
hardware level. It can, however, decrease and restore its software level as
necessary to insure safe access to any variables it might need.

interrupt level.

Our basic approach consists of a mechanism which simply maintains and dis-
plays the hardware and software levels for each line of code and variable in the
system, With this information as a guide, the PrﬂffammEP can proceed on his cwn
to resolve any conflicts that are pointed out. The level information is inserted,
modified and acted upon in a cnmgletely manual fashion; it is less an augmenta—
tion of ocur pr@grammln% system than it is a documentation technique. Nonetheless,
it has proven valuable for several reasons: 1) the rules are quite simple and
deterministic, and lead to a high level of program correctness when properly
applied; 2) the documentation aspect of the system is, in itself, valuable; and
3? forcing the programmer to be aware of multiprogramming issues improves the
overall reliability of his programs.

There are six macros to declare the hardware and software levels of the
program. In addition to setting the levels, they perform wvarious consistenc
checks. The first three assemble appropriate code to achieve the desired effec
upon the interrupt system:

1; INT N declares the interrupt entrance at level N.
2) INH W locks interrupts at level N.
3) ENB restores the interrupt system to the current hardware level.

Because programs have transfers and subroutine calls and non-contiguous fragments
of code, there are analogs to INT, INH and ENB which effect the declaration for
the purposes of checking but presume that the interrupt system is already at the
declared level, and thus do not generate any code:

H% LEV N declares the code to be hardware level N, This is an implieit INT.
5 LEE N declares the code to be at software level N. This is an implicit

6) RET'declares the.code’s software level to be equal to its hardware level.
This is an implicit ENB.

Each word of code that is assembled and shown in the listing is accompanied
by its hardware level, and also by its software level if different. Variables are
indicated with a V and the determination of their effective levels and the verifi-
cation of their correct use is done manually, or otherwise, distinetly from the
assembly process. For example, some levels that have been compiled for our IMP
program (Heart 1970) include:

M2I = O Modem=-to=-IMP
I2M = 1 IMP-to-Modem
I2H = 2 IMP-to-Host
HZTI = E Host=to=-IMP
To0 = Timeout
T3K = g Task
BCK = Background
A sample use of these levels might be (in TASK):
5 LDA THIS /GET THIS PACKET
5 INH I2M /LOCK OUT I2M
5 1 STA EMQ XI /ADD NEW PACKET TO QUEUE
5 1 STA EMQ X /EMQ = END OF MODEM QUEUE
5 1 ENB /COME BACK TO TASK LEVEL
5 JMP FDO

The effective levels for THIS and EMQ must be "known" (for example, by reference
to a previous assembly). THIS is on level 5; it is a-temporary in Task. EMQ is
on level 1; it is shared by I2M, Timeout and Task.

5 The INH-ENB mechanism is somewhat simplistic; in practice, things can be
quite a bit more complicated. The principles always remain the same, but it is
not always clear just how to prevent a given routine from running. There can be
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assorted interlocks in the software: it might be that a particular interrupt can-
not occur (for example, because the device 1s known to be inaective), or it might
be that the higher priority routine cannot take a path which accesses the variable
in question %for example, in setting up the parameters of a datum before a flag
indicating that there is a datum has been set). However, once the key places in
the system are pointed out, it is almost always easy to implement the controls or
verify that they are already present.

In systems with more complicated interrupt structures, applying the rules
becomes eorresEondin l{ more difficult. Nonetheless, even the most intractable of
structures will yiel o the steadyhanded application of the rules, We give three
examples. First, consider two user-level jobs within a timesharing system. The
timesharing sgstem itself is probably a complicated interrupt-driven system, but
let us direct our attention only to the two user jobs. The nature of a timeshar-
ing system is that at any point a user job ean be interrupted, "swapped out", and
another user Jjob run in its place, ser gﬂbs typicall{ have no explieit way to
"inhibit" one another. S¢ if two jobs wish to communicate through some shared
structure, be it shared memory or a shared disk file, considerable care must be
given to prevent interrupt bugs from cropping ug. Again, the mechanisms chosen
will wvary widely, but the basic rules can be used again and again to pinpoint
those portions of a program which require protection.

Second, consider two processes (for instance, coroutines) that both run at
background 1level, which suspend and resume processing on some basis (this is, in
essence, the heart of a Eolling system), If these two processes share a common
resource the following kind of bug can occur:

A B

LOAD X LOAD X

Eéﬁspend procesgin§] Eéﬁspend proeea;in%}
resume processing resume processing

STORE X STORE X
Because B can run between the time A suspends and resumes and vice versa, either’s
STORE X could be an error if the other has run and changed X. Aﬁain, the problem
is that a routine modifies a shared variable in an "interruptable" way. A system-
atic solution to this ﬁroblem can also be developed based on the assignment of
local levels within the main hardware level to all routines and variables and the
use of the rule that a routine imglicitly inhibits all lower priority levels and

ﬂnlé its own sublevel -- each sublevel considers the other sublevels at its level
as being "higher" than it.

Our third example of a situation requiring an extension to our systematie
approach is that of a true multiprocessor. Here the problem of concurrent access
to shared resources is present at all times. Protection in such an environment
can be effected by the well-known uninterruptable "test and set" instruetion
(Dijkstra 1968) as implemented, for example, in (Heart 1973). However, now a new
type of problem arises: when routines require several "locks" at once_ in order to
proceed, deadlocks can occur if all routines do not take and release locks in a
coordinated wa{. An extension to our approach is of value here: if the locks are
assigned levels and routines are constrained never to take a lock with a lower
number than one it already has (i.e., locks must be taken in strictly ascending
order), our system can be expanded to provide the necessary sequencing information
to allow the avoidance of lock-ordering deadlocks.

AUTOMATING THE APPROACH

In this section we discuss a means of making our approach automatic. The
grgcedure we are going to deseribe is a "cookbook" for assigning levels and veri-
ying that there are no bugs. Much of this work can be done by a program, and the
procedure has been organized with that in mind.

For the first step, we identify and assi%n hardware levels to all of the
executable code in the system. We start at the actual hardware interrupt
entrances and assign to them the actual level of the interrupt the¥ represent, We
then trace through the code in the natural way, assigning the starting hardware
level to all code (not in subroutines) "reachable" from the interrupt entrances
(an instruction which occasionally skigs assigns its level to the next two loca-
tions, a transfer assigns its level to its effective address(es), etc.). A sub-
routine call propagates its level to all of its possible exits.

With all of the main line code dealt with, we next examine each subroutine
to see if all of its calls have had their hardware levels assigned, If so, we
assign the minimum of the calling hardware levels as the hardware level of the
entry to the subroutine. We then assign hardware levels to the rest of the code
in the subroutine, and then loop back fo find other subroutines all of whose calls
have had their levels assigned.
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This rocedure should result in every line of executable code having a
hardware level assigned to it. If some code has remained unassigned, then it 1is
not ever executed. If some code has attempted to have several hardware levels
assigned to it, there is probably a bug in the control structure.

Next we assign hardware levels to the data and variables of the system.
First, all of the read-only variables (i.e., constants) are located and marked as
such. All other variables are assigned the hardware level of the minimum of their
referents. This should assign a hardware level to all variables, and every used
tor?t in the program, both code and data, will now have a hardware level assigned
o .

Now we assign software levels to the code. Each interrupt entrance is
assigned a software level equal to its hardware level, Then, for all instructions
which are neither at the returns of subroutines nor instructions which affect the
interrupt system (e.g., LOCK or UNLOCK) we propagate the software levels as we did
the hardware levels. The level of the instruction following one which affects the
interrupt system should simply reflect whatever was done to the interrupt system,
and then propagation can contlnue. Subroutines are a little more complicated.

We initially assign to each subroutine entrance a level of zero and propa-
gate that assignmen{ through the subroutine to determine a tentative exiting soft-
ware level for each exit from the subroutine. Then, as we encounter a subroutine
call instruction (either in the main code or in another subroutine) we compare the
software level of the eall and the tentative software level of the subroutine
entrance. If the calling level is lower-numbered than the subroutine level, each
place that the subrouftine ecould exit to is assigned the software level of the
associated exit, If the calling level is higher-numbered than the subroutine lev-
el, the subroutine entrance is reassigned with the level of the call and the new
level is prcgagated through the subroutine (which maﬁ entail changes in other sub-
routines). f the software level of any exit from the subroutine is changed, then
every call to that subroutine thus far processed must have the affected exit reas-
signed and this new level must be propagated tg the succeeding instructions.
Since such a change can only increase an instruction s software level number (and
there are only a finite number of levels), this Erocedure will eventually termin-
ate. Whern it does terminate, each subroutine will have been assigned the maximum
of the software levels of all of its calls, and the effects of such an assignment
will have been propagated back through the calling sequences.

At this point, all executable code should have both hardware and software
levels assigned to it. If, at any point, the system has attempted to assign two
different software levels to a word (exce { as a result of reaBSLEning a subrou-
tine), it assigns the maximum. If, at any Eaint it has attempted to assign a
software level larger than the hardware level, then fhere is a bug.

Now we are read¥ to verify that all of the data references are bug-free,
First, man types o© data references are "interrupt-proof"; e.g., an isolated
LOAD or STORE reference. "Dangerous" references to variables must be checked,
however. For each such reference, the scope of the reference must be identified.
Within each such scope, determine the largest software level oceurrin% anywhere
within it (not forgeﬁting to trace through any subroutines called). hen verify
that the hardware level assigned to it is equal to the derived reference-software-
level. Any viclation is an error: if the hardware level is less than the software
level, then the reference is not sufficiently locked to insure a bug-free refer-
ence; if the hardware level is greater than the software level, then the refer-
ence is excessively locked and perhaps system performance can be improved by
inereasing the software level of the reference,.

This procedure should verify that there are no interrupt bugs in the con-

trol or data structures of a program. The ambiguities e.g., in determining "dan-

erous" versus "safe" references) can usually be eliminated by the cooperation of

he programmer; for example, the programmer could just use the op-code SSTORE

(which would assemble in the same way as a STORE) to indicate a "safe" store, or

he could use a different mnemonic for potentially skipping instructions which are
known, in the context, never or always to skip.

CONCLUSION

Qur apgroach has been threefold: 1) we have analyzed exactly what proper-
ties and constructs within a system could give rise to multiprogramming confliets;
2) we have written macros for our assembler which note the various protection
structures and log any deviations (i.e., Erotectiﬂns where none are needed, and
portions which require additional protection); and 3) we have designed a ground=-
work from which a more complete and more automatic system could be built.

Finally, we have extended the theoretical basis of our system so that other
types of multiprogramming structures, e.g., multiprocessing and polling systems,
can be handled. We have deaignea the basis of an automatiec programming system
which would allow the writing of multiprogramming conflict-free programs with min-
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imal unnecessary overhead. The rules, although difficult to incorporate inte an
assembly language, could easily be included in an appropriate higher level lan-
guage .
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"Techniques for Detecting and -Preventing
Multiprogramming Bugs" by B. P. Cosell, J. M.
McQuillan, D. C. Walden

In the last operating system I built, I ran into
trouble with a low priority routine which must run
every 10 minutes. When the scheduled time was
approaching, the operating system gradually
increased the priority of this low priority
program.

That is a c¢lassical problem in time-sharing
systems. Also at the beginning you said there were
10 minutes to do the job at a 1low priority, and
after 2 1/2 minutes you give the job more priority,
after 3 1/2 minutes more, etc. We have not tried
these at very slow speed, (on the order of every
3-5 minutes). We have not found the need to have
dynamically changing priorities. We are content to
live within the linear structure., I do not know
exactly how to answer your comments: your task
must get done in 10 minutes. I certainly know how
to write code to make that happen. But that kind
of code is almost impossible if it shares a
variable with almost anything else in the system.
When the code starts, the higher priority routines
are interrupting it, so it has to do all the pro-
tection. As it gets more and more priority, it
begins to be able to defer the now lower priority
routines and they must now protect themselves from
1E. So it sounds as if in the end your system has
to protect everything all the time. We certainly
can do that kind of thing but we have not done it
thus far.

One faces a similar but somewhat easier problem in
the case of optimizations of disk seeks. There,
one wishes to service the shortest seek time first,
but without making anyone wait forever to be
serviced. The way that we solved that is by having
something called a fairness count, which is
specified at system-build time. Every nth time
(where you select n) the person who has been
waiting the 1longest gets serviced in spite of
whatever other rules may apply in the system. When
you get multiple levels of priority, the situation
becomes more complicated, of course.

More questions?

I think the problem might be best solved by use of
semaphores because then you can explicitly protect
single variables, without turning off the whole
systne.

True, in the kind of problem I am addressing it 1s
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implicit that semaphores are fine. But you have to
be careful,unless your machine has an
uninterruptable 1load and c¢lear to zero or some
instruection of that variety. You have the problem
of just how to manipulate the semaphores. If you
want to read and take the semaphore, you have to
read it, make sure you can get it, and if you

decide to take it, it may be too late. Somebody
may have already taken it. You need some way of
guaranteeing that you are protected. Between the

time when you look at the semaphore, and the time
that you decide that yes you can proceed.

Okay, but you can turn off the interrupts exactly
for the few instructions when you change the
semaphore.

Assuredly, as for example I did right here in mny
little example. Instead of doing the kind of thing
I am referring to, you can determine the absolute
level to which you want to activate the interrupts.
Then you go to whatever pain it takes to only
deactivate to level 3 leaving levels 2 and 1l
active. If your program is .organized carefully,
you can usually arrange to protect a small number
of instructions. 165 s (- R | negligable system
degradation to turn off the entire interrupt system
for a few microseconds. That can barely hurt
anything.

But, nonetheless, this particular kind of technique
can identify which portion of c¢ode actually reqguire
lock instructions.



