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The Monarch parallel processor design is aimed at producing a multiple instruction stream,
shared memory computer capable of 6 MIPS and 2 scalar-megaflops per processor in

configurations having approximately 10^, 10^, 10^, and 5 x lO^ processors. The machine
will use 64-bit arithmetic operands and in the above configurations should be capable of
600,6,000,60,000 or 300,000 MIPs and one-third as many scalar-megaflops. This is an
aggressive machine design for which the implementation is in progress but not yet
complete.

In the course of our parallel processing work on Monarch and a potential follow-on to
Monarch, we have produced many valuable interim results. These include new and novel
ideas, techniques, and artifacts. Some are valuable new electrical engineering, some are
new forms of algorithms, and some are new approaches to machine design. We have listed
some of them here with a brief description of each.

Monarch System Design - The Monarch illustrates how a parallel computing system
can be designed around tiie interconnection mechanism rather than around a processor or a
memory. It also illustrates the value of coordinating chip and system design. The Monarch
design uses four custom VLSI chips and about an equal number of off-the-shelf chips.
With so few chips used many times, it is possible to have a very low-cost system.

Most computers are complex in their architecture because computer architects tend to
include special facilities for particular aspects of a problem, (e.g. auto incrementing
addressing modes). The Monarch has an exceptionally straightibrward structure which
may be an example for other designs.

The Monarch is easy to describe — thousands of identical processors access a single
multiported memory through a switching network. We expect that such a uniform
architecture will let the programmer attack the parallelism in his program more effectively
than other designs, removing machine imposed barriers such as declaring shared variables,
local memoiy limits, and the coordination of message traffic. If a programmer can see
parallelism in his application, he should be able to put it on this machme.

Algorithms for Large-Scale Parallelism - Our experience with coding algorithms
for Butterfly have led to several new ways to approach problems on a parallel machine. A
few of these techniques are listed below.

Recursion Breaking - An algorithm which requires  a number of steps, where
each step depends on the previous result, is referred to as a recursion. We have
developed several techniques that split the string of results into pieces so that the
parallelism is enhanced.

Large Memory Techniques - In addition to a large number of processors, the
Monarch has a large amount of memory. We have found many ways to
precompute tables that aid in problem solution. Surprisingly, this often helps
improve the parallelism in an application. These techniques may be useful for large
memory uniprocessors (like the Princeton Massive Memory Machine).



Data Synchronization - The steal primitive provides efficient synchronization
between parallel tasks with much finer grain than has previously been attempted in a
shared memory machine.

Algorithms - In addition, we have examined numerical algorithms showing
10,000 way parallelism for dynamic programming, sorting, searching, pattern
matching, bit operations and many oAers. We have now ̂ gun to benchmark these
algorithms on a simulator (16-processors). The first benchmark simulated gives
results better than the theoretical estimate. A thousand processor version of the
simulator should be running soon.

Electrical Engineering Results - The Monarch is designed around a high-performance
interconnection network. We have developed techniques that allow operation at high data
rates using normal CMOS technology. Some of the particular results are listed below:

Dynamic Delay Adjustment - In a normal system design, signalling between
components of the machine is either synchronous or asynchronous. In a
synchronous design, a central clock establishes when signals should be sent and
when they should be received. Normally, the difference in delay between signals
and the skew in clock phase as seen by different components limits the speed at
which a machine can operate. This forces very special design techniques in the
Cray and other machines where circuits are tuned to control skew and drives Cray
to physically smaller machines.

The alternative is asynchronous design where the timing of signals is passed with
the signals. Unfortunately, this requires arbitration when two events occur at
nearly the same time. The uncertainty in which came first gives rise to the "classic
synchronizer problem" and introduces additional delay.

With the help of Professor Lance Glasser, we have developed a third approach
which is relevant to systems where custom or semicustom LSI is being used. We
distribute a central clock to establish an accurate frequency of operation, but
introduce an artificial delay into every signal in the machine. This delay is
automatically adjusted to correct for any signal skew. We have just recently
received a patent on this technique.

This approach has greatly eased the design of the Monarch and has enabled us to
consider machines with several tens of thousands of processors. The technique
will be of great value to many other system design projects.

High-Performance I/O Pads - The signalling rate of the Monarch will be at
least 100 megabits per second, and theoretical analysis, timing simulations, and
fragmentary empirical results from test chips indicate the signalling rate may be as
much as 400 Mbps. This is unusual in an age where most CMOS is running at 16
to 33 MHz. We have developed special high performance pads in our Monarch
design frame to drive transmission lines at these high speeds.

On-Chip Termination Resistors - We have integrated the line termination
resistors into the Monarch chips so that we can turn them off when they are not
needed. This provides better terminations, significant space savings, and this could
dramatically reduce power consumption and thus requirements for heat dissipation.
This work is similar to the recent work by Tom Knight (MIT and Symbolics).



High Speed CMOS design - We have been using MOSIS design techniques
to make very high-performance CMOS designs for register files, switching
networks, and other circuit components. These desi^s or techniques are at least
10 times faster than most other CMOS designs. The idea that CMOS can't run at
these speeds is simply wrong, and our demonstration of high speed CMOS design
will add to the list of successful high speed CMOS designs in the DARPA
community.

We have theoretical results for each of the above at present and expect to have empirical
results after the switch chip comes back from MOSIS (expected in February).

Control Network - In the Monarch design, every custom chip is connected to a
monitoring and control network. (This network is in no way associated with the primary
inter-processor connection network of the machine.) Initially, this was to allow us to
parameterize a few chips and monitor a few statistics. We have been surprised at how
powerful this notion has become. For example, using the control network, it is possible to
test electrical continuity throughout the machine. Similarly, it is possible to run diagnostics
on all of the chips in the machine from the control net directly. TTiis is a level of diagnostic
and maintenance support that may be revolutionary, and makes it possible to build reliable
massively parallel machines.

The control network also allows control over the configuration of the machine. Switch
outputs can be enabled or disabled, error detections recorded, and switch load measured
directly. Even minor pieces of the machine can be controlled. For example, each switch
has its own random number generator. The control network sets all of these generators to
different values at initialization.

Monarch Design Frame - The custom IC's in the Monarch are designed using a
common collection of logic around the perimeter of the chip. This logic, which is known
as a "design frame" by VLSI designers, deals with the high-speed I/O for the chip, the
control network, power, and clocking. Using this design frame approach, a designer can
concentrate on the design of the "core" circuitry that is placed inside the design frame. In
the Monarch, the actual switching matrix is an example of "core" circuitry.

Once the Monarch design frame is proven, other groups might use it to build components
(like a specialized processor) that work with the Monarch. Alternatively, the design frame
could be used in other DARPA computer design projects.

Switching Network Design - The Monarch switching network uses switch nodes that
have more outputs than inputs (e.g. 6 inputs routed to 8 destinations) to reduce the load on
the outputs and reduce contention. The switches have two paths in parallel to each
destination so that the probability of conflict is substantially reduced. This changes the
network statistics so that it can run at close to full capacity without over congestion rather
than having to run at quarter capacity to avoid congestion.

Since we have switches with more outputs than inputs, there are a lot of wires between
columns of switch nodes. In order to reduce this, we provide a statistical concentrator
which reduces the number of wires between boards and reduces the number of switch
nodes required in the second and third columns.

The Monarch design also provides for redundancy throughout. The system can be
reconfigured around the failure of any processor, switch, concentrator, or memory
subsystem in the machine.



This switching network design is well integrated into the Monarch computer but could be
used in other systems as well. Thought of as a switch, it supports 8 Megabytes per second
of memory reference on each port and can be built with from 4- to 64000-ports for a total
bandwidth of from 32 Million to 0.5 Trillion bytes per second. Imagine using the Monarch
switch as a very high performance very local area network, e.g., to connect the LISP
machines in the MIT dataflow simulator.

We have designs, theoretical and simulation studies now, and we should have empirical
studies by summer.

Processor Design - Our goal has not been to innovate in the design of the Monarch
processor, but none-the-less, several innovations have occurred. The processor performs
64 bit operations. However, it is implemented in  a serial fashion with 2 bit wide data
paths. This has allowed us to hide the latency of the switching network.

The Monarch processor design is mostly compatible with the MIPS core instruction set.
However, in its implementation, there are aspects of a very large-word processor.
Instructions are matched to the pattern of periodic communication with memory. The
processor may execute a memory reference instruction, then execute several register-
register instructions or control instructions.

This is a nice enhancement of the reduced instmction set principles, and should be usable to
increase several fold the speed of such instmction execution, on our own and other
machines.

Memory System - The memory system of a computer is often an underrated component.
In the Monarch, the memory system has been designed with as much care as the processor.
The memory consists of a large number (half the number of processors) of independent
memory modules. Each module is optimized for memory bandwidth through clever use of
serial access modes.

The design also includes time multiplexing for better utilization, two-port memory system
design, and tagged memory at little extra cost.

Packaging - Our board interconnection ideas have received some informal publicity and
deserve a more formal description. Our ideas for controlled-impedance connectors should
also be generally interesting.

Tools - We have developed a simulator for the Monarch. We have developed several
VLSI tools to aid our design effort and a library of high-speed logic cells.

Services - We have built a small (seven people now) very strong staff of high speed
MOSIS CMOS designers. We have an extraordinarily creative team of parallel processing
system architects and very extensive experience deploying parallel processors (50 Pluribus
systems in mid-70's, 85 Butterflies in mid-80's, 228 parallel processor based Computer
Image Generation systems in the last two years) and programming them for numerous
applications (several communications systems, sonar signal processing, graphics
processing, speech recognition, vehicle dynamics simulation, fluid mechanics, finite
elements, AI, etc.).


