Monarch Parallel Processor: Assessment of Programmability
September 8, 1988

This report presents my assessment of the programmability of BBN's Monarch
parallel processor. While learning to use this machine, I have taken special care to track the
intellectual obstacles I have encountered and to reflect upon how difficult they have been to
overcome. I have chosen a programming project which demands a variety of techniques
from parallel algorithms and constitutes a rigorous test of Monarch programmability.

Having no prior experience with parallel programming, I have spent approximately
forty hours learning Monarch C and developing software which can be compiled and run
on BBN's simulator. Initially, with help from the Monarch engineers, I concentrated on
developing simple programs for summing large lists of integers and performing matrix
multiplications. These projects occupied about half of my time and allowed me to become
familiar with the handful of techniques required for successful parallel programming. I
have devoted the remaining time to my primary project: implementing a parallel graph
algorithm for computing minimum spanning trees (MST). Toward this end, I have
developed nearly 300 lines of Monarch C code. In the course of generating this code, I
have found it possible to take full advantage of the Monarch's MIMD architecture and
achieve the asymptotically optimal speedup for parallel MST algorithms on shared memory
machines.

Computing minimum spanning trees has been an active area of research in parallel
computation and many algorithms for the problem have been published. I found that I was
able to implement the fastest of these algorithms in Monarch C using just the basic
techniques I learned from BBN's engineers. The steal operation proved to be a powerful
tool for synchronizing processors and implementing the algorithm's crucial logarithmic
combining phases. Similarly, parallel do loops proved easy to develop and allowed me to
allocate processors to disparate tasks simultaneously. In this manner, I was able to bring
the full force of Monarch's powerful MIMD architecture to bear on the inherent parallelism
in the spanning tree problem.

In assessing the Monarch's programmability, it is important to bear in mind that
parallel programming techniques are richer and more powerful than their sequential
counterparts. There are new abstract concepts which need to be learned. However, my
experience with the Monarch indicates that parallel programming concepts are no more
difficult to master than the basic sequential concepts taught in introductory programming
courses. Newcomers to Monarch programming may initially stumble over logarithmic
combining and the steal operation. But after some practice, they will find these concepts no
more difficult to master than pointers, loops, recursion, or other basic ideas of computer
science.

In conclusion, I have been very favorably impressed with the programmability of
the Monarch. While successful parallel processing does require mastery of some new
programming concepts, these are not difficult to learn on BBN's Monarch. I am confident
that competent programmers will experience little difficulty learning to program this
machine.



