IDN-14

Butterfly Gateway Process Structure

Eric Rosen

February 1984

INTRODUCTION

The processing which the Butterfly gateway will need to
perform upon a vreceived datagram can be divided into several

steps:

- First, the datagram must be physically received over the
device. The gateway will have to control this transfer by

means of an input device driver.

- Then the gateway will need to execute some protocol or set
of protocols (network access protocols) with the entity that
is transmitting the datagram. In some cases (e.g.,
ethernet) this protocol will be relatively simple and
straightforward, but in others (e.g., X.25) there may be two
("level 2" and "level 3") rather complex protocol state

machines to maintain.

IDN-14 February 1984

- Once the network access protocol is completed, and the
packet correctly received, the gateway must the determine
internet transport protocol being used. It might be a
private gateway-gateway protocol (say, used for transmitting
routing updates or neighbor up/down packets), or it might be
the standard IP. If it is the standard IP, the datagram
might or might not be addressed to the gateway, and this

needs to be determined.

- If it 1is addressed to the gateway, further protocol
demultiplexing is needed, to be followed by further
processing specific to the particular protocol. This might
or might not result in the need for the gateway to create

and transmit a datagram of its own.

- Otherwise, the gateway will have to transmit the datagram to
some other entity. It will have to select an output

interface over which to send the datagram.

- It will have to execute the level 3 and level 2 output
protocols, and then turn the datagram over to a device

driver for that output device.

IDN-14 February 1984

In order to implement the gateway in the Butterfly, these
functions have to be distributed among a set of Chrysalis
processes. A Chrysalis process can be thought of as a set of
procedures which have been linked together into a single memory
image, and which are treated by the Chrysalis scheduler as an
indivisible schedulable entity. There are many different ways
one might divide the gateway into processes. The purpose of this
note is to explain the way we have chosen, and to explore the
various trade-offs. The mechanisms we intend to use for inter-

process communication are also discussed.

There are a number of mutually conflicting factors to

keep in mind when choosing a process structure:

- I/0 latency requirements. This factor applies primarily to
the device drivers which run synchronous high speed
interfaces. VWhen certain sorts of external events occur
(e.g., the input device signals "end of message"), there is
typically only a small interval of time during which the
device driver must run and perform a certain amount of work.
If the driver cannot run or cannot complete its task before

this interval elapses, inputs may be lost. If this happens

IDN-14 February 1984

frequently, performance becomes very poor. Similarly, on
output, if the next output cannot be started soon after an

output completion interrupt, throughput may be low.

Fair distribution of the CPU resource. The process
structure should be such that the "time-slicing" and
"declared need" features of the Chrysalis scheduler can be
used to good advantage to help ensure that the various

gateway functions all get adequate running time.

Make best use of the built-in services of the operating
system, rather +than trying to duplicate these services
within each process. For example, one would want to avoid
having each process implement a lot of internal scheduling
if the operating system’s scheduler could be made to do the

same thing.

The software should be divided into processes in a way which
facilitates the existence of clean, modular interfaces
between the processes. That is, one should try to devise a
process structure which minimizes the amount of knowledge

which each process must have of the internal data structures

IDN-14 February 1984

or algorithms of any other. (Protocol layering is a special

case of this.)

- The number of processes running on a single processor node
should be kept relatively small, to avoid running out of

SARs, and to generally simplify system overhead.

~ The number of memory segments in the virtual address of a
process should be kept relatively small, in order to avoid

running out of SARS.

- The process structure should facilitate parallel processing
wherever that 1is feasible and would serve to increase the

throughput or reduce the delay of the system.

~ The process structure should facilitate a variety of
different assignments of processes to processors, so that
the software configuration in a particular gateway can be
matched to the particular hardware configuration for best
delay/throughput performance. (However, we do not see a
need to have the system automatically "discover" its best
configuration; this can be done by means of "config tables"

which are created off-line.)

IDN-14 February 1984

Both the process structure and the inter-processor
communications mechanisms should be optimized for the high
throughput path. One should avoid having a lot of overhead
devoted to the case of messages which, while they may be
high priority, are only a very small fraction of the

messages seen by the gateway.

The process structure should be designed with an eye to
minimizing (other things being equal) the amount of

interprocess communication that is needed.

Needless to say, these desiderata are not fully

objective, nor are they capable of being fully and jointly met.

The design process is largely a process of making trade-off among

these considerations. The following description of the process

structure design will attempt to explain the way the trade-offs

wvere made, and why, in our design.

IDN-14 February 1984

PROBLEMS WITH DEVICE DRIVING IN THE BUTTERFLY

The Chrysalis scheduler, rather unfortunately, was
designed on the assumption that none of the schedulable processes
would have to meet strict latency requirements. This assumption

shows up in three ways:

1. Only a very small number (4) of preemptive priority

levels are available.

2. Scheduling and context-switching overhead may make it

hard to meet latency requirements.

3. Within a fixed interval of time known as an "epoch", the
scheduler will attempt to ensure that ALL processes (even
those of the lowest priority) get some CPU time, even if
this means that a higher priority process gets held off
to let a lower priority process run. This feature is
welcome from the perspective of fairness in the sharing
of the CPU resource, but it conflicts directly with the

need to meet latency requirements.

The only existing communications applications of the

IDN-14 February 1984

Butterfly, viz., the Voice Funnel and the BSAT, have off-loaded
all high speed device driving functions into a subsidiary
processor, the BIO. The BIO contains the complete device driver,
and interfaces to the 68000 via linked lists of "channel control
blocks", a structure defined in the Chrysalis operating system
specifically for communication with the BIO. The BIO also deals
specifically in terms of Chrysalis buffers, and will send and
receive packets to or from linked 1lists of Chrysalis buffers,
performing +the buffer chaining automatically if a single packet
does not fit into a single buffer. With all I/O controlled by
the BIO, There is no need for the 68000 to field input completion
interrupts, thereby removing strict latency requirements from all
processes which run in the 68000 under control of the Chrysalis
scheduler. The BIO provides similar services on the output side,
which eliminate the need for the 68000 to field output completion

interrupts also.

However, the gateway will not wutilize +the BIO or, at
least initially, any other I/0 interface of comparable
sophistication. The Butterfly gateway will have a multibus +to

which standard network I/0 devices can be connected. Plans are

IDN-14 February 1984

to use the PAMPERS board for 1822 and HDLC interfaces, and the
Interlan board for ethernets. These devices require the presence
of device drivers in the 68000, since they cannot deal in terms
of Chrysalis structures (like buffers), and cannot perform buffer
chaining. The Interlan board does use a hardware FIFO,
protecting the 68000 to some extent from the strictest of latency
requirements, but these devices still leave latency requirements
which can be quite strict, or at least too strict to be met by
Chrysalis processes running under the usual scheduler discipline.
Ultimately, we hope to have more sophisticated ethernet
interfaces (a much improved Interlan board is scheduled for the
future), and to re-program the PAMPERS board to make it more
"Butterfly-friendly", but initially, at least, we need to deal

with relatively unsophisticated devices.

IDN-14 February 1984

DEVICE DRIVERS -- INTERRUPT HANDLERS PLUS ASSOCIATED PROCESSES

We propose to deal with this problem by writing part of
the device drivers as 68000 interrupt handlers, rather than as
Chrysalis processes. The 68000 has 8 interrupt levels, numbered
0-7 from lowest to highest priority. Chrysalis processes (of all
priorities) run at priority O, and the Chrysalis scheduler itself
runs as the priority l‘interrupt handler. Levels 3 and 4 are

available for I/O interrupt handlers, i.e., device drivers.

There is no particular problem in writing interrupt
handlers for the Butterfly. Since they are not run by the
scheduler, however, they must be responsible for saving and
restoring context. This seems to require only the saving and
restoring of the registers (which can be done by a single
instruction), and the saving, setting, and restoring of the ASAR
register. (If the interrupt handler does not set the ASAR
register ditself, it will run in the address space of whatever
process was interrupted. This would not seem to be satisfactory,
in general, but it might be if it were guaranteed that every
process on that processor node had all the buffers in that node’s

memory mapped in, and if all the device driver’'s data structures

10

IDN-14 February 1984

were in common segments.)

Interrupt handlers "steal" time from the processes they
interrupt, in that the scheduler does not take account of them at
all. Therefore, if the system spends significant amounts of time
in the interrupt handlers, the scheduler’'s ability to manage the
CPU resource is severely compromised, and processes may not get
the proportion of time they really need. The device drivers will

therefore have to be kept as small (in time) as possible.

Each I/0 device will have two (one for input and one for
output) associated interrupt handlers. Each interrupt handler
will have an associated Chrysalis process, which is the only
process with which it can communicate directly. This process
will be known as the "driver process". The device driver can
thus be thought of as consisting of the two interrupt handlers
and the associated process or processes. It is expected that the
interrupt handlers will be written in assembler language for

maximum efficiency, while all processes will be written in C.

The driver process will need to have the entire buffer

pool of the local processor mapped in, so that it can transfer

11

IDN-14 February 1984

data to or from any buffer in local memory. (I/O data transfer
is not possible with memory on other processors, nor is any
interaction with the I/0 device possible from a remote
processor.) It may be a useful convention to have the interrupt
handlers set their virtual address spaces to that of the

associated driver processes.

12

IDN-14 February 1984

COMMUNICATION BETWEEN THE INTERRUPT HANDLER AND THE DRIVER PROCESS
OR:

I/0 CONTROL BLOCKS -- ARE THEY NEEDED?

Is there a need for I/0 control blocks, or can all the
information that the interrupt handler needs to transmit receive
data, as well as to record the status of the transfer, be placed
in the buffer itself? There are two issues relevant to answering

this question:
- Is there a lot of control and/or status information needed?

~ Do we want to exclude the possibility of ever <transmitting

the same buffer simultaneously over two or more interfaces?

If the amount of necessary control or status information
is very large, we wouldn’'t want to provide space for it in every
buffer; that would be wasteful, since not every buffer can be in
transmission at any one time. On the other hand, if the amount
of information is small, then keeping it in the buffer is very
convenient, since that woulq mean that we wouldn’'t need to manage
yet another dynamically allocated resource (i.e., the control

blocks).

13

- IDN-14 February 1984

However, if we want to be able to transmit a buffer out
several interfaces simultaneously (e.g., multi-cast, routing
updates), we cannot keep control and status information about
each transmission in the same buffer; it would seem that control

blocks would need to be used in that case.

Unfortunately, the gateway will probably not be able to
make much use of multiple simultaneous transmission. A packet
transmitted out several interfaces will generally need a
different protocol header for each interface; the very same
packet (physically) cannot really be transmitted out each
interface. Even 1if the same protocol is used on two different
interfaces, the address to which the message is sent over each
interface would generally be different. This differs from the
similar situation in the IMP, in which, for the transmission of
routing updates, e.g., a single transmisison protocol is used for

every "interface" (modem trunk), and no addressing is needed.

It may be unwise to have the design exclude the very
possibility of multiple simultaneous transmission, particularly
if the basic structure of the system is to be adaptable to other

(more IMP-1ike?) applications. Further, it will not become clear

14

IDN-14 February 1984

until the design of the device drivers is taken to a greater
level of detail whether the status information which needs to be
stored with each packet is large enough to warrant the use of

control blocks to save space in the buffer headers.

If control blocks are used, managing them should be the
responsibility of the driver process, not of the interrupt
handler. That is, the process should get a free block (off a
free queue, presumably), and fill it in with the information the
interrupt handler needs. Then it should place the block on a
queue for the interrupt handler. After transmission is complete,
the interrupt handler can place the control block back on a queue
for the associated process, which would look at the block and
then free it. Given that the associated process needs to be on
the same processor as the interrupt handler (see next paragraph
for justificatiomn), it makes sense for these control block queues
to be 1linked 1lists, rather than, say, dual queues. To prevent
race conditions, the process will have +to inhibit interrupts
whenever enqueuing to or dequeuing from the list. It will be the
responsibility of the driver process to ensure that the queue is

properly ordered (by priority, perhaps), if that is a factor.

15

IDN-14 February 1984

If control blocks are not used, the driver process can
communicate with the interrupt handlers via linked lists of
buffers, rather than via linked lists of Dblocks. Most of the

other considerations are unchanged.

To meet latency requirements, or Jjust to keep up
throughput, it is mnecessary to allow the dJqueue between the
interrupt handlers and the driver processes to grow to a length
greater than one. If comtrol blocks are used, this implies a
need for more than one control block per device. It is not clear
at the present whether a control block would be needed for each
buffer on the queue, or just one for each packet (linked list of
buffers) on the queue. Clearly the latter is preferable, if it

is feasible.

If a transmission is in progress at the instant that a
control block is placed on the queue, the interrupt handler will
be responsible for serving the queue when its current
transmission completes. If, however, the device is idle, the
driver process needs to take some explicit action to initiate the
transfer. This is requires the driver process to be on the same

processor as the I/O device and its interrupt handler; I/O

16

IDN-14 February 1984

registers cannot be manipulated across the Butterfly Switch.

The interrupt handler will assume that any Dbuffers on
that queue are in the memory of the 1local processor. The
interrupt handler will need to know the physical address of a
. buffer in order to use it for I/O. Rather than having to make
the mapping from buffer ID to physical address every time a
buffer is used for I/0, it seems to make sense for each buffer to
carry its physical address in its header; this can be set up at
initialization time. (This also simplifies one of the tasks of
the DISPATCH process, viz., determining whether a given buffer is

on the same processor as a given I/0 device.)

Input drivers (at +the interrupt handler 1level) will
obtain free buffers directly from the main free queue of the
local processor (a dual queue), unless that queue is empty. If
it is empty, they will obtain free buffers from a "private" free
queue, as explained in the note on Dbuffer management. Since
buffers may get placed on the free queue (even the private free
queues) by processes running in remote processors, these will be
made dual queues. (This allows the PNC microcode to prevent

multi-processor race conditions in the enqueuing/dequeuing

17

IDN-14 February 1984

operations.) The input driver will also have to obtain a control
block from a free queue, which should probably be a linked 1list
of Dblocks. Since only one process touches this queue, and that
must be on the same processor, locking can be done simply by
inhibiting interrupts, and the dual queue mechanism has no

advantage over linked lists.

A fixed number of I/0 control blocks can be assigned to
each interface, or they can be made a dynamically allocated
resource, like buffers (although there will be many fewer I/0
control blocks than buffers). If they are dynamically allocated,
then there will have to be "block management", whose algorithms
will Dbe much the same as those of the buffer management system
described elsewhere. (The block management system could be made

a smaller version of the same procedures.)

The interrupt handler will be responsible for linking
together all the buffers into which a datagram has been read.
When input is complete, either a control block pointing to the
first of these buffers, or else the buffer itself, will be queued
to the driver process. If this queue is made to be a dual queue,

the driver process can be automatically woken up. If it is made

18

IDN-14 February 1984

to be a 1linked 1list, the interrupt handler will have to
explicitly post an event for the driver process to make sure it
becomes runnable. This might be preferable, since it might make
it easier to devise an algorithm which does not necessarily make
the driver process runnable after every input. (The same
consideration applies to the queue of returned control blocks
which the interrupt handler passes back to the driver process

after output completion.)

It is the intention that the interrupt handlers perform
as few functions as possible, viz., only those needed to keep the
I/0 device running at full speed (or as close to that as
possible) and to interface with the driver process, and that all
other functions, in particular all Level 2 and Level & protocol
functions, be performed by Chrysalis processes. The interrupt
handlers will not be expected to check sequence numbers, validate
checksuns, perform buffer management computations, allocate
control blocks, etc. It is the responsibility of the driver
process to provide the interrupt handler with a long enough queue
of datagrams, when available, to keep it busy until the driver

process can run again.

19

IDN-14 February 1984

PROTOCOL PROCESSES

Performing I/0 requires more than just driving the
device; there is protocol to be executed with the entity on the
other side of the device. In some cases, there are two
protocols, a level 2 and a level 3 to be executed. These must be
executed by Chrysalis processes. There are a number of ways one
might try +to divide this functionality into processes. At one
extreme, one could imagine that a processor might contain only a
single protocol-executing process, which executed all the
required protocols needed for all the various devices on that
processor. This would have the virtue of minimizing the number
of processes. At the other extreme, one could imagine that each
device has four protocol-executing processes associated with it,
one for input and one for output of the level 2 protocol, plus
one for input and one for output of the level 3 protocol. This
would have the virtue of reducing the amount of code needed by
each individual process. There are also an arbitrary number of
intermediate choices. We now consider some of the issues

involved in choosing how to apportion the required functionality

into distinet processes.

20

IDN-14 February 1984

MAPPING PROCESSES TO DEVICE: ONE-ONE OR ONE-MANY?

Should a process which is responsible for executing a
particular I/0 protocol execute that protocol for all the I/0
devices (or over all the I/O devices connected to a single
processor node) which use that protocol, or should be there one
such process per device? A process which is written to handle
the protocol over just a single device is certainly going to be
simpler than a process which must handle several devices. It
will not need to malntain a set of data structures indexed by
device, nor will it need to have an algorithm for scheduling the
way the various devices are handled relative to each other. The

scheduling is left completely to the Chrysalis scheduler.

The major disadvantage of having a separate process for
each device is the unwanted multiplication of processés and
consequent drain on the SAR resource. Perhaps this will not be
too serious if the number of devices on a single processor node

is relatively small, as it probably will be.

Leaving the relative schedulings of the various devices

solely to the Chrysalis scheduler might be a mixed blessing. It

21

IDN-14 February 1984

simplifies the protocol process, but it also removes a level of
control from the application software. However, as long as the
processes for all the devices run at the same priority level, and
have reasonable time-slice and declared-need parameters, it is
hard to see how the scheduler will show favoritism to any one
device over another. This avoidance of favoritism is about all
one can ask, and it is hard to see how the application software

could do better.

This considerations suggest having a separate protocol
process for each device, UNLESS we run out of SARs. Should this
happen, it may be necessary to cut back on the number of
processes by having a single process handle several devices.
(However, that could only be a factor in gateways which had

several devices running the same protocol.)
INPUT AND OUTPUT -- ONE PROCESS OR TWO?

Should the input and output functions needed to run a
given protocol over a given I/0 device be in the same process, OT
in two different processes? The major reason for wanting to put

input and output in the same process is that the two are

2

IDN-14 February 1984

generally intimately related in the state machine of the
protocol. If separated into two processes, the output process
would still need to know about the input headers in order to know
whether to make certain state transitions. There would be a need
for continuous inter-process communication which is very much

simplified if only a single process is used.

The major reason for wanting to put input and output into
two different processes is to avoid having to have the process
itself make decisions about the relative scheduling of input wvs.
output functions. If a process has to serve both an output queue
and an input queue, it needs to do some internal scheduling which
might otherwise just be 1left to the Chrysalis scheduler. For
example, a single process needs to have an explicit algorithm to
ensure that neither input nor output locks out the other (perhaps
by alternating its attention between input and output functions);
if there are two processes, the Chrysalis time-slicing might
prevent this automatically. However, in that case there would be
no way for +the application to control the input vs. output
fairness algorithm. In some situations, the ability to tune this

algorithm might be important to performance or robustness.

Q3

IDN-14 February 1984

Fairness in handling input vs. output on a single device
differs from fairness among several devices in that the former is
much more intimately related than the latter. The ability to do
I/0 on one device is independent of what is happening on any
other device. The ability to do output on a given device,
however, may depend on what inputs have arrived recently over
that device. One could imagine processing all piggybacked acks
in packets on the input queue, then ohécking to see if this
enables more output to be done, then going back and processing
the packets on the input queue. This is not necessarily the way
one wants to handle it, but it is an example of the close inter-
relationship of input and output on a single device, and is
something which would be more difficult to do if input and output

were handled by separate processes.

Since we are speaking of the implementation of a single
protocol, there is no argument from modularity or protocol
layering suggesting that there should be two different processes.
In fact, one might argue that considerations of layering and
modularity favor (though not require) a single process handling

both input and output, since that maximizes the simplicity of

24

IDN-14 February 1984

replacing one protocol by another without affecting the rest of

the system.
LEVEL 2 AND LEVEL 3 -- ONE PROCESS OR TWO?

In some cases, performing I/O over a given device
requires only one level of protocol. This is the case for an
ethernet interface, or for a phone line directly connecting two
gateways (which might run HDLC or even IMP-IMP protocol, for
example.) In many cases, however, there are two 1levels of
protocol, Level 2 and Level 3. This is the case for X.25 and HDH
interfaces. Should these two levels be implemented in a single

process, or in two different processes?

A common misconception is that protocol layering requires
that different protocols be implemented in different processes.
The goal of layering does require the existence of clean modular
interfaces between the procedures that implement the different
layers, but these interfaces could well be implemented as
subroutine calls rather than as inter-process messages. In fact,
from the programmer’'s point of view, there is not that much

difference between the two methods of passing data from one

25

IDN-14 February 1984

protocol "module" to the other, since the programmer need not
think too much about whether a given routine call is actually
doing the work of the next protocol level, or 1is passing a
message to some other process. If one were using subroutine
calls to pass information "between" the two protocols, +the most
flexiblei and robust way to pass arguments would be to pass
pointers to explicitly formed argument lists, i.e., pointers to
structures, and there is little difference in programming effort
between setting up a structure and setting up an Iinter-process

message.

From a software engineering point of view, each of the
two methods has some advantages and some disadvantages. On many
systems, one wants to strictly minimize Dboth the amount of
inter-process communication, and the amount of process context-
switching that is dome. This is common when the operating system
is a multi-user time sharing system, and one is trying to
implement network protocols in user processes. On such systems,
one would certainly make one protocol level be a "subroutine" of
the other. The Chrysalis/Butterfly environment, however, 1is

optimized for sending messages between processes (even when they

26

IDN-14 February 1984

are running on different processors), allows easy access 1o
common memory, and has relatively inexpensive context switching.
(The context switching is not so inexpensive that one could
countenance a context switch during the processing of each
packet, but this is not implied by the scheme of having separate
processes implement the separate protocol levels.) However,
having more rather than fewer processes involves a cost in SAR

usage.

In some situations, one wmight want to use global
variables (i.e., shared memory) for communication between
protocol layers, rather than message passing or argument passing.
For example, this might be the best way of handling status
information about the device itself (rather than individual
packets), since that eliminates any delay which might be inherent
in message passing. This does not distinguish at all between the
two methods, since, in the Butterfly, different processes can

easily share any number of memory segments.

In the gateway, we will want to have various mixtures of
level 2 and level 3 protocols. We foresee some interfaces which

are simply HDLC or possibly IMP-IMP (direct gateway-gateway

27

IDN-14 February 1984

connections); some which are simply 1822; some which are HDH
(1822 as level 3, HDLC as level 2, with a 1little special HDH
processing thrown in); some which are X.25 (X.25 level 3 plus
HDLC); and some which are SATNET/HDH. From a software
configuration viewpoint, is it very convenient to ensure that a
given process needs to be compiled and linked only once, and is
then suitable for loading into ANY gateway, no matter what its
hardware configuration. If some gateways will need 1822 combined
with HDLC (HDH), and others will need HDLC combined with X.25
level 3, and others will need 1822 without HDLC, and others HDLC
by itself, +this desideratum is most naturally (at least, most
naturally to Chrysalis) handled by having distinct processes for
the different protocols. That is not to say iﬁ is the only way
of handling it however. However, it could also be handled by the
use of common library routines and transfer vectors, though the
operating system does not really offer much help here at the

present time.

(The ability to have library routines which reside in
only one place in memory but are callable from several processes

would be important here; in a gateway with one HDH interface and

28

IDN-14 February 1984

one X.25 interface, one would not want to have separate copies of
the HDLC "library" linked into two different processes. This is
probably not impossible, but does require a bit of "fighting the
system”. While we intend to make some use of common libraries
with re-entrant code, if possible, this will probably be confined
to relatively small and self-contained functions, rather than

major protocol modules.)

Since it seems natural to think of different protocols as
different processes, and since this way of treating them is more
congenial to the Chrysalis environment than the other, we have
decided to adopt this procedure, at least unless it results in an
unacceptable multiplication of processes. It will Dbe an
interesting challenge to try to see to what extent we can make
the code independent of this decision. One would hope that
switching between the process model and the subroutine model
could be done by changing only a small and well-defined number of
“interfacing"” routines. Certainly, most routines need not know
whether the message to which they have a pointer has been removed
from an inter-process queue, or whether the pointer has been just

been passed down from a higher level routine.

29

IDN-14 February 1984

We needn’'t be dogmatic about the process model, however.
We may occasionally need to implement a protocol which is so
small, in space and time, that it is much less costly just to
make it a subroutine (even if it has to be linked separately into
every process that might need it in some configuration.) A good
example is +the HDH “"level 2.5" protocol, which does so little
(especially when used in "message mode", which I +think is its
preferred method of operation), that it would seem to make most
sense to make it a subroutine in either the 1822 process or the

HDH process.

30

IDN-14 February 1984

DIFFERENT DEVICES, SAME PROCESSES —- CONFIGURATION

Thus every I/0 interface will be associated with an
interrupt handling routine, the driver process that interfaces to
the interrupt handler, and one or two protocol processes. Vhere
there are two protocol processes, we will speak of the LEVEL2

process and the LEVEL3 process.

In certain configurations (e.g., an HDH interface), a
given process (e.g., HDLC) will, when it has completed its input
processing of a packet, need to pass it to another protocol
process (e.g., 1822). However, in other configurations (an HDLC
line with no level 3 protocol running) the processed input will
have to be otherwise disposed of. A similar point can be made
with respect to output. For an HDH interface, the 1822 process
must pass a processed output packet to the HDLC process. For an
1822 interface (local or distant host), the packet must be passed
directly to the appropriate device driver. We would like the
protocol processes to be identical in both cases. This implies
that they must make the decision as to how to dispose of a
processed packet by consulting configuration information imn the

gateway. We ©posit the existence, for each I/0 device, of a

31

IDN-14 February 1984

"device control block", which will be in a global common area. A
process should need only to look in this block to determine how

to dispose of a processed packet.

The device control blocks should also be used to contain
any information about the state of the device (either configured
state or dynamic state) which might need to be known by any
process. This might include such things as whether it is up or
down, its recent error rate, various statistics about its recent
utilization, its bandwidth, the delay associated with it, whether
it is available for use or blocked by protocol, etec., etc., ete.
To the greatest extent possible, information like this should be
represented in a device-independent manner. We should be able to
represent a considerable amount of information about the device
in this block, making the information immediately accessible to
all processes without the need for extensive inter-process

message passing.

This is especially for such information as interface
up/down status which must be readily available to many processes,
from the driver to the protocol processes to the routing-update-

generation and dispatching processes. It some cases, interface

32

IDN-14 February 1984

status changes will need to trigger some action to be taken by
“higher level” processes such as routing. Perhaps at
initialization time, each process that needs to become runnable
when there is an interface status change should write an event
handle in the device control block. Then whatever process
happens to first discover the change in status can be responsible

for posting the events for all the others.

33

IDN-14 February 1984

DEVICE AND PROTOCOL INDEPENDENCE

One might ask whether the protocol process which deals
with the device driver cannot itself contain a piece of the
driver? Why have, e.g., an HDLC process and a simple driver
process which does little more than interface with the interrupt
handler, when one could simply make the HDLC process itself
interface to the interrupt handler, and thereby eliminate the

separate driver process?

This makes a lot of sense if (a) the protocol process is
on the same processor as the I/0 device which it uses, and (b)
the interface to the interrupt handler is device-independent. In
most cases, condition (a) will probably hold. However, we can
imagine a gateway having a few very high throughput devices, in
which, to ensure the meeting of latency requirements, a single
processor node has to be totally devoted to device driving tasks.
In such a case, we would want to put the protocol process on a

separate processor, and have a separate driver process.

It is not clear to what extent condition (b) will hold.

If it doesn’t, then it may be hard to make the protocol processes

34

IDN-14 February 1984

device-independent. Of course, if the device dependencies are
small, this could be handled by the use of common library
subroutines. (VWhile we rejected the idea of implementing entire
protocols as library routines, it may be easier to implement this
more restricted set of functions as a common library.) Perhaps we
should retain the flexibility to have either a separate driver
process or not, as demanded by the configuration, and specified

in the device control block.

It is generally desirable not only to make the protocol
processes device-independent, but also to make the driver
protocol-independent. However, in certain circumstances,
performance considerations may make this desideratum difficult to
achieve. For example, when transmitting HDLC packets, one wants
to load in a piggybacked acknowledgment at the last possible
instant, so that the maximum number of received packets can be
acknowledged as soon as possible. But one also wants to provide
the driver with as long a queue as possible, so that the protocol
process need not run between every pair of sent packets (which
would hold down throughput). These considerations are in

conflict. The best way to minimize the acknowledgment delay

35

IDN-14 February 1984

while also maximizing throughput might be to have HDLC process
store the acknowledgment sequence number in a known place, and to
have the driver (presumably the interrupt handler) load that
number into each packet upon transmission. However, this removes
the protocol-independence from the driver. Perhaps the right
thing to do would be to conditionalize this, so that the driver
determines from the device control block whether HDLC is running
over this device, and does the right thing in either case. There

is still a layering violation, but a relatively minor one.

36

IDN-14 February 1984

INTER-PROCESS COMMUNICATION BETWEEN LEVEL2 AND LEVELS3

How shall the LEVEL2 and LEVEL3 processes pasSsS nessages
to each other? The Chrysalis dual queue mechanism is the most
natural means of inter-process communication. It is'supported by
the microcode, and operates in a way which avoids enqueue/dequeue
race conditions which might otherwise arise in the multi-process
and multi-processor environment. Placing something on a dual
queue has the further advantage of automatically making runnable
any process which is waiting on the queue. Since dual queues of
packets are really just ring buffers of pointers to the packets,
there is the further advantage that a given packet can be
simultaneously on an arbitrary number of dual queues (assuming an
appropriate use count mechanism in +the buffer headers, which
Chrysalis does to provide). Further, the number of queues on
which a packet can reside can be increased at any time without
need to redesign the packet headers, or to recompile the entire

system.

Dual queues have two major disadvantages, however. The
major one is that the ring buffer must be allocated to a fixed

size at initialization +time, which restricts the number of

37

IDN-14 February 1984

packets the queue can contain. The ring buffer requires four
bytes per potential queue item. If the maximum queue size

greatly exceeds the average size, much memory can be wasted.

The other major disadvantage is that a dual queue cannot
easily be sorted so as to implement a priority queue. (Queue
items can only be placed at the head or at the tail of the
queue). Priority queues can, of course, always be implemented as
multiple queues, but this does introduce other problems. If one
supposes that the throughput due to high priority packets is low,
and the throughput due to low priority packets is high, one would
like to have a scheme in which the extra work needed to handle
priority packets is done by the process that puts stuff on the
queue (the ‘“producer"), vrather than by the process that takes
stuff off the queue (the "consumer"). It is more efficient to
have the producer, which already knows it is handling a high
priority packet, insert the packet at the proper place, than to
require the consumer to always scan a whole bunch of queues, most
of which will be empty most of the time. The former scheme has
no penalty if high priority packets are not present; the latter

scheme does.

38

IDN-14 February 1984

There may be ways around this, however. For example,
perhaps the enqueuer can place a special marker at the head of
the low priority queue to indicate the presence of a packet on a
higher priority queue. The details of such a scheme are
problematical; this would have to be considered in more detail
whenever it 1is decided that a given pair of processes need

multiple priority queues for their communication with each other.

Another potential problem with the use of multiple dual
queues for priority might arise if a higher priority queue filled
up while a lower priority queue did not; one wouldn’'t want to
keep the lower priority stuff while discarding the higher. (But
on the other hand, one wouldn't want to discard the 1lower just

because one couldn’'t keep the higher).

In the particular case of LEVEL2 talking to LEVEL3, the
priority problem is certainly not very serious. In most cases in
which there are both levels of protocol, it is necessary to
maintain sequencing among the packets handled by the processes.
So there is no application of priority queues when communicating

between the two processes.

39

IDN-14 February 1984

The size issue may also not be that important in this
particular case in the gateway application, since there will
generally be only one process producing items for this queue, and
one process consuming items from it (though we will shortly
consider the case of wmultiple producers and/or consumers).
However, it is also true that the interface between LEVELR2 and
LEVEL3 is NOT a good place to start dropping packets because they
cannot fit on +the inter-process queue. So some mechanism is
needed to handle this situation when it arises, even if it arises

only rarely.

If LEVEL2 and LEVEL3 are on the same processor, they
should run at the same priority level, in order to prevent a
context switch after each packet is processed by the first
protocol process. The +time slicing parameter should be set so
that, on average, a certain number of packets can get processed
by the first protocol process before it gets sliced out, giving

the other protocol process a chance to run.

However, if the two protocol processes are on different
processors, the time-slicing mechanism does not function. And at

any rate, it will always be possible that the feeding process

40

IDN-14 February 1984

will at some time fill the dual queue. This possibility can be
dealt with in the following manner. The producer process can, at
initialization time, allocate an event block whose handle will be
known to the consumer process. The consumer process will post
this event whenever it empties the dual queue (or reduces the
size of the dual queue below a threshold). When +the producer
process fills the dual queue, it will cease any processing that
would result in more things going on that queue, until that event
is posted. There is mnot too much cost to posting this event
unnecessarily (i.e., when the queue is emptied, but was not

previously full).

This scheme extends naturally to the case in which there
are several processes consuming a single dual queue; whichever
one finally empties the queue (or reduces its size below the
threshold) is the one which should post the event. If there are
several producing processes, the scheme breaks down, since one of
them might stop producing once it fills the queue, while the
others manage to keep the queue non-empty (or above threshold),
while still never quite filling it. 1In this case, the former

process would get locked out.

41

IDN-14 February 1984

One could deal with this case by having the process which
fills the queue set a lock (a dual queue lock) which prevents the
other producing processes from putting anything more on the queue
until the consuming process empties it and then signals them all.
The need to check the lock before putting any item on the queue
is an extra expense. However, this check could be avoided if,
according to the config information, there is only one producing
process. Then the cost of checking the lock just trades off
against the benefit of having several producing processes which

could run simultaneously.

Note that this might cause a protocol process to cease
its processing of input, while continuing to process output, or
vice versa. There is NO requirement that the process sleep when
the dual queue it is running fills up. The producing process is
not even required to cease processing input, only to cease
forwarding the processed inputs to the next protocol level. It
will be an issue in the design of each particular process whether
it should (a) discard packets it cannot forward, or (b) whether
it should let such packets pile up on the queue that it consumes,

or (c) whether it should keep packets which don't fit on the

42

IDN-14 February 1984

inter-process queue queued up internally (in a linked list).

The same mechanism would be used to pass packets between
the LEVEL2 protocol process and the driver process (if these are

separate processes), which case is very similar.

If I/0 control blocks are used by the device driver, and
this kind of process-to-process blockage were to persist in the
input path, eventually input would stop, since all the 1I/0
control Dblocks would be tied up on the linked list which the
input interrupt handler prepares for the driver process. Rather
than block the input interface like this, it may be desirable to
keep a small number of I/0 control blocks free, so that input can
continue. The driver process can implement this stategy by
discarding packets from the linked list as needed to keep 1its
size at or below a certain threshold. This provides the option
of receiving certain special packets (routing updates, up/down
probes) and processing them "ahead" of packets which are

languishing on queues.

If I/0 control blocks are not wused, input won't get

blocked quite so soon, but the same situation applies; one wants

43

IDN-14 February 1984

to keep some buffers freed up so that input can always continue.

How can "special" packets get "pushed ahead" if the
protocol requires sequencing? There is no reason why the device
control block for each interface cannot indicate the offset into
the buffer at which the IP header or gateway-gateway protocol
header would start. This might vary with different protocols,
but could be set up at initialization time. The driver process
can thus look ahead at each packet, and if it is a special
(gateway-gateway internal protocol) packet, the packet can be
passed ahead to whatever special process needs to look at it,
even while it is still being queued for LEVEL2 input processing,
or even if the queue of the LEVEL2 input is filled. (Remember
that with dual queues, a single packet can reside simultaneously

on an arbitrary number of queues.)

This architecture does not require that there be a single
LEVEL2 and a single LEVEL3 process for each interface. Multiple
processes of either level are possible if they become
bottlenecks, so that one wants to use the multi-processor
parallelism to increase throughput. Unfortunately, however,

protocols that tend to be CPU-intensive also tend to require

44

IDN-14 February 1984

sequentiality, thereby removing parallel processing as an option.

There is no requirement that the LEVEL2 and LEVEL3
processes be on the same processor as each other, or that either
be on the same processor as the I/0 device. The
Butterfly/Chrysalis environment provides the flexibility to
assign the processes to processors differently in different
gateways, as the configuration warrants. The gatewvay
initialization routine will have to be able to tell, from
configuration data, which processes must be created on which

Processors.

Regardless of which processors contain the various
protocol processes, it is still the case that all the packets
being handled by those processes will reside in buffers which are
in the memory of the processor to which the I/O device is
attached. Therefore, all the protocol processes which serve a
particular I/O interface, as well as its driver process, must
have all the buffer segments of that processor in their virtual
address space. No buffer segments on any other processors need

be included in their address space.

45

IDN-14 February 1984

If a protocol process is not on the same processor as the
I/0 device it is serving, it is probably more efficient for the
process to block transfer the header of +the packet it is
processing into 1its own processor’'s memory than for it to
(transparently) refer several times to that remote memory. In
general, 6nly a small number of packets are being processed
simultaneously (perhaps one for input and one for output), and
the block transfers can be made into a fixed area; no buffers on

the process’ processor are needed.

46

IDN-14 February 1984

DISPOSITION INFORMATION ~- SENDING BACK INFO TO A PRIOR PROCESS

In some cases, a particular protocol process may not be
able to completely finish its processing of a particular packet
before it passes the packet on to the next process. Rather, it
may need to learn about the actions which are later taken with
respect to that packet (by other processes) before it can finish
its own processing of the packet. For example, one might decide
that the acknowledgment for an incoming packet should not be sent
unless that packet can be successfully queued for output. The
intention would be that if some later process had to discard the
packet, say for buffer management reasons, one would then not
have acknowledged it, and the network entity which sent it would
then retransmit it. It is not clear at the present time whether
the gateway will actually have an application for this strategy,
but this strategy is used in the IMP. At any rate, our design

should not be incompatible with such a strategy.

A clean way of having a “"later" process inform an
"earlier" one of the ultimate disposition of some packet is
simply to have the later one mark the disposition somewhere 1in

the header, and then put the packet (probably, only the first

47

IDN-14 February 1984

buffer of the packet) on another dual queue for the earlier
process. (Remember that a given packet can reside simultaneously
on an arbitrary number of dual gqueues, given an adequate use
count facility.) This avoids the need for one process to touch
the data structures of another, which would almost certainly
cause a violation of protocol layering. It also avoids the need

to establish a separate method of inter-process message passing.

This dual queue would have to be large enough to contain
the maximum number of packets which the protocol can leave
outstanding (i.e., unacknowledged), or else acknowledgments may
be spuriously withheld, and spurious retransmissions may result.
However, this number is at least bounded, and is often quite
small. Furthermore, if making the dual queue ring buffer smaller
than maximum size does cause the occasional spurious withholding

of an acknowledgment, no great harm is done.

Packets would not need to sit on these ‘“"return" queues
very 1long, since packets on those queues are not really waiting
for some resource (such as a transmission medium) to become
available. Generally, the protocol process which consumes the

return queue will only need to note the disposition of each

48

IDN-14 February 1984

packet in its internal tables, which can be done very quickly.

In order to implement this in a clean way, the Dbuffer
header would have to contain an indication as to which, if any
process needs disposition information about this packet, so that

later processes know where to find the return queue.

49

IDN-14 February 1984

AFTER INPUT IS COMPLETE -- THE DISPATCH QUEUE

Suppose now that a packet has been fully and correctly
received and processed through all necessary layers of protocol.
What is done with it next? Now the real “"gateway processing"
begins. This processing will depend on what kind of packet it

is:

- "special" gateway-gateway protocol packet, such as a routing
update or a neighbor up/down packet. There will be a
Chrysalis process devoted to each of these. Since these
packets need immediate processing (high priority), but occur
relatively infrequently (low throughput), it may Dbe
advantageous to have them processed by processes which run
at a higher priority than the protocol and device driver
processes. (Perhaps though these packets will have already
been passed ahead from as discussed previously, from the
driver processes to the special processes that consume them.
Also, it is not really clear at present whether there is a
significant advantage in having a Chrysalis process run at a

higher priority than others.)

50

IDN-14 February 1984

- a transit packet which has already been seen by some other
gateway and which must travel to some other gateway (where
the exit gateway is identified in the gateway-gateway header
that was created by the entry gateway). The exit gateway
must be looked up in the routing tables in order to
determine a "next-hop gateway". If the next-hop gateway is
a neighbor of this gateway over more than one network, omne
of the available networks must be chosen. If this gateway
has several interfaces to that network, one must be chosen.
Then the packet must be enqueued to the protocol process (or
to the LEVEL3 protocol process, if that interface needs two
levels of protocol), subject to Dbuffer management

considerations.

- a packet which is addressed to this gateway. This may be an
EGP message, an HMP message, an ICMP message, an RDP
message, etc. These packets might or might not have
gateway-gateway headers, depending on whether this gateway
was also the entry gateway. There will have to be one or
more processes to handle these messages. It may be suitable

to have these handled by lower priority processes,

51

IDN-14 February 1984

especially since Chrysalis ensures that even lower priority

processes get to run.

- a packet which is entering the internet system at this point
(i.e., has not been seen by any other gateway). It must be
determined whether this packet is addressed to this gaﬁéway
(if so, see previous paragraph). If not, a gateway-gateway
header must Dbe fashioned. The routing tables must be
consulted to find which gateways are potential exit gateways
for its destination network. One of these must be chosen.
Then the packet must be processed as if it were a transit

packet.

In some cases, it may not be possible to queue a packet for
output, Dbecause the output queue is full, or because no buffer
can be obtained, or because the packet’'s destination is known to
be unreachable, or because access control restrictions would be
violated, etc., etc., etc. In some of these cases, the packet
can Jjust be discarded, or placed on a "return" queue so its
disposition can be indicated to the protocol process which
handled it on input. In other cases, an ICMP message might need

to be sent to the source host. In the latter case, the packet

52

-

IDN-14 February 1984

would need to be queued to a process (lower priority, possibly)

which can create and send ICMP messages.

Should these decisions, and the related processing, be
made by the receive side protocol process which finishes the
input processing of the packet, or should there be another
process (call it DISPATCH) which receive ALL packets that arrive
over the interfaces and which makes these decisions? The more
complex +the decision making is, the more reason there is to have
another process, and as we see, the decision making needed here
can be rather mnon-trivial. Introducing a separate DISPATCH
process seems a better alternative (for reasons already\advanoed)
than having a large library of dispatching routines callable by

all other processes.

Introducing a separate dispatching process also enables
better use of the multi~prooeésor environment, since the can be
multiple DISPATCHes working in parallel, all consuming from a
common DISPATCH queue (which we will call the "DQ"). Advantage
could even be gained just from having a single DISPATCH, on a

different processor than the protocol processes.

53

IDN-14 February 1984

There are other advantages to having a D on which all
packets will reside at some time or other. It simplifies the
gathering of various sorts of statistics about the utilization of
common resources in the gateway, and about the throughput and
user data flows seen by the gateway. It provides a common place
where other processes (e.g., message generator processes, ICMP
processes, EGP processes) can place their messages without having
to perform routing or buffer management themselves. Without a
common D@, certain simple functions, such as having a message
generator send packets to itself without having those packets
ever actually leave the gateway, are very much simplified. As
long as +the DISPATCH process runs at the same priority as the
protocol processes, or if there are multiple DISPATCHes running
in parallel, this should not have an excessive cost nor should it

become a bottleneck.

54

IDN-14 February 1984

THE DISPATCH PROCESS

In general, the particular DISPATCH process which
processes a given packet need not be on the same process as
either that packet’s input device or its output device, and these
two devices need not be on the same processor as each other.
Therefore, the DISPATCH process, after choosing an output device
for the packet, must determine whether that device is on the same
processor as the input device. If so, it will have to +try to
obtain enough free buffers on the output processor (subject to
buffer management limitations) to hold the packet, and will have
to copy it from the input to the output processors. At that
point, the input buffers can be freed. If input and output are
on the same processor, no copy is necessary, but the buffer
management computations must still be applied, and may cause

discarding of the packet.

It follows from this that all DISPATCH processes must
have all buffer segments from all processors mapped into their
virtual address spaces, since they might have to copy from any
buffer on any processor to any buffer on any processor. This is

another very important reason (perhaps ultimately the most

55

IDN-14 February 1984

important) for having a separate DISPATCH process, instead of
having all the protocol processes to their own dispatching.
Otherwise, all protocol processes on all processors would have to
have all the buffer segments on all processors mapped into their
virtual address spaces. This would be much more expensive in
terms of SAR utilization than it requiring Jjust one (at most)

process per processor to have all the buffer segments mapped in.

In most cases, DISPATCH will dispose of a packet Dby
enqueuing it for a protocol process (LEVEL3 if there are two
levels of protocol needed) which serves omne of the output
interfaces. This transfer will be made by enqueuing onto a dual
queue, subject to buffer management considerations. If buffer
management considerations, or a full dual queue, prevent the
assignment of the packet to that output interface, there are some
cases in which DISPATCH might be able to choose another output
interface (e.g., if there are two interfaces to the same network,
or if a given neighboring gateway is a neighbor over two
networks). If the packet cannot be queued to any appropriate

output interface, then DISPATCH must discard it.

This is the case in which the fixed maximum size of the

56

IDN-14 February 1984

dual queue is most likely to cause difficulty. However, this can
be alleviated to some extent if we require that the consuming
process remove packets from the dual queue as soon asS possible,
even if they cannot be transmitted. The consuming process can
keep such packets on an internal queue which is implemented as a
linked list. With this strategy, the dual queue need be sized
only according to the scheduling latency of the consuming
process, not according to the possible backup from the output
interface. This also allows the buffer management scheme to
function properly to prevent too many buffers from being tied up
waiting for a single interface. Also, this is a point where it
does not hurt too much to discard packets if they can‘t fit on

the dual queue.

If we have several priorities of packets, the dual queue
between DISPATCH and the protocol processes needs to be
prioritized. If several distinct dual queues are used for the
different priorities, there is a difficult issue of how to handle
the case in which a high priority queue is full while a low
priority queue is empty. We don’'t want to start discarding high

priority stuff while keeping low priority stuff. Even with a

57

IDN-14 February 1984

single prioritized queue, there is the issue of how to avoid
discarding high priority packets while 1low priority packets
remain enqueued. The "proper" strategy, from the perspective of
meeting the priority requirements, would be to somehow remove low
priority packets from the queue so as to make room for high

priority packets.

Discarding a packet will require DISPATCH to maintain
statistics as to the number of packets discarded for the various
reasons. If it is required to send an ICMP source quench packet
after every N discards, or after every N discards for a
particular reason, the Nth "discarded" packet should be enqueued
to the (lower priority?) process which is responsible for
creating ICMP messages. Actually, only enough buffers to contain
the IP header need to be so enqueued, and the header of the first
buffer needs to be marked so as to indicate that a source quench

should be sent to the source of the packet.

If a packet elicits an ICMP redirect, then that packet
should be enqueued to the ICMP process, as well as to the
appropriate output interface. Of course, its header will need to

be marked to indicate that a redirect should be sent.

58

IDN-14 February 1984

The same strategy should be followed for any packet which
elicits any type of ICMP response. If the queue to the ICMP

process is full, then this step should just be skipped.

If a packet gets queued to both an output protocol
process and the ICMP process, buffer management should be based
on the output interface. If it gets queued to only the ICMP
process (perhaps because buffer management prevents its being
queued for output), the ICMP process should be treated as an

output device from the point of view of buffer management.

Vhen the ICMP process creates a message in response to a
particular packet, it may be able to use the same buffer, IF the
use count of the buffer indicates that no one else is wusing it.
Otherwise, a new buffer must be obtained from the free queue. It
doesn’t really matter which processor’'s free queue is used. In
either case, additional buffer management must be done, treating
the ICMP process as an input device. VWhen the ICMP message is

created, it is just put on the end of the DQ.

When DISPATCH finishes with a packet, it may also need to

enqueue it on a "return queue", after marking the packet with its

59

IDN-~-14 February 1984

disposition information. If the return queue is full, this step

should just be skipped. No buffer management is involved.

Initially, packets entering the internet system at this
gateway can have their gateway-gateway headers set up by the
DISPATCH process. Ultimately, as we evolve to a more “"circuit-
oriented" interface, with control information between the entry
gateway and the source host (e.g, to enforce flow control), we

may require a separate process.

Packets addressed to the gateway will be enqueued to a
special “FORUS" process (ultimately, perhaps wthere will be
several such processes), which will be treated by DISPATCH as

Jjust another output interface.

DISPATCH should not need to 1look at the source route
option. A packet whose IP destination address is this gateway
will be sent to FORUS, which will, if necessary, swap our address
with the next address in the list of addresses to be visited, and
then return the packet to the DISPATCH queue. (N.B.: If we want
the return route field to have the output interface address,

rather than the input interface address, DISPATCH will have to

60

IDN-14 February 1984

place the output interface address in the return route field the

second time it sees the packet.)

Communication with the routing and up/down processes will

be considered in a separate memo.

All of the inter-process messages we have discussed so
far have been messages which can be transmitted outside the
gateway. We have not discussed the use of a special class of
inter-process control message whose use would be solely to carry
status or commands from one process to another. It is not clear
at the present time that we will need any such messages. We have
discussed several cases in which status and/or command
information from one process to another is piggybacked on the
buffer header of a buffer containing a packet. In these cases,

the information is about that particular packet.

We have assumed that a buffer might have to be on as many
as three queues at once: an output queue, a return queue, and an
ICMP queue. The buffer header will have to have emnough space to
simultaneously contain the information that needs to be passed to

all three processes.

61

IDN-14 February 1984

In other cases, the status information or commands might
be about some particular device, rather than about a particular
packet. One example is an interface’'s going down, which
information, once obtained by some process, needs to be made
known to the interrupt handler, the driver process, one or two
protocol processes, and the routing process. Another example
would be the reception by the gateway of, say, an HMP command to
flap the ready line on one of its 1822 interfaces. This command
would have to be conveyed from the FORUS process which interprets
the HMP message to the device driver. In both of these sorts of
cases, 1t might be possible to mark the information (or command)
in a control block for the device, and then to signal the
processes that need to know about it by posting an events. It is
not clear at present whether this technique will work in all
cases, but if it does it might be much 1less troublesome than
sending méssages from process to process, because it does not
require any dynamic message block management, and does not give

rise to any flow control problems.

62

	20200317_(e.g.,
	20200317_February 1984
	20200317_IDN-14

