b

3

—

MISCELLANEOUS IOT'S,

The I0T's described here are:

Reader
GRDR = ICT 4400
RRDR = TOT 4300
RPA = TIOT 4200
RPB = IOT 10200
ERIM = IOT 10300

Punch
GPUN = IOT 4400
RPUN = IOT 4600
PPA = IOT 4500
PPB = IOT 10400

Sorobsan
SOT = IOT 5200

™ime and Date
GTD = IOT 3400
GTD+L

Real-Time Clock
RCK = IOT 4700

P-Pointers
WPP = IOT 3200
PEEK = IOT 3700

List Pairs
ADDLP = JIOT 1300
ADDLP+4
QETLP = IOT 41400

Aestart Mode Control
RSMC = IOT 41200
RSMCH4
RSMC+2
RSMC+3

Miscellaneous
DELAY = IOT 1600
DELAY--40
HALT = JOT 12401
HOLD = I0T 2000
PSU = IOT 41500
DDTGO = IOT 10063
CL6RET = IOT 4000
SUPGO = IOT 44400

16 webruary 1967

/set reader
/release reader
/read character
/read binary punch
/enter readin mode

/get punch
read character

/punch character
punch binary word

/type on Soroban

/get startup time and date
/actual time and dabe

/read clock

/write location
/read location

/EVD

/10T

/eet list pairs
/leave

/enter
/debreak

/debreak and enter restert mod

/delay
/delay for n seconds
/halt
/hold a number
/program start up

start program under DDT
/misc. Exec functions
/full core segment IOT

o

8



)

MISCELLANECUS IOT'S
PAGE 2

PAPER TAPE READER

A program must own the reader in order tc reference it. If
a program executes an RPA, RPB, or ERIM without owning the
reader, the IOT is considered illegal and the program
crashes. A program may '"get" the reader even if it already
owns it.

Use of reader I0T°s., .
Get the reader and clear the reader buffer:

GRDR
R1 /owned by another program
R2 /gotten

There is no trap mode for this IOT's error return. Option:
GRDR+4§ does not clear the reader buffer.

Release the reader:

RRDR
Rl /released

There is no error return for this IOT, If a program executes
an RRDR and does not own the reader, the IOT is ignored.

Read an alphanumeric character:

. RPA
R1 . /echaracter in low order 8
bits of 10

RPA takes the next character from the reader buffer and places
it in the low-order 8. bits of the I0., The remainder of

the IO is cleared. If no characters are available, the

user is "reader-bung"” until the reader buffer fills,



MISCELLANECUS I0T'S
PAGE 3

Read paper tape binary:

RPB /read a binary word from paper tape
RPB reads a binary word into the I0 from paper tape. A
binary word consists of three binary characters assembled
in the following way.

low=-order 6 bits low=-0order 6 bits low-order 6 bits
of of of
1st character 2nd character 3rd character

A binary character is one that has the 8th hole punched. The
7th hole {(normally @) is ignored. The IOT continues reading
tape until it has found three such characters, skipping over
any that do not have the 8th hole punched. RPB is a core

16 IOT that executes RPA’s,

Enter readin mode:

ERIM /enter simulated readin mode
ERIM is a core 16 IOT which calls RPB repetitively. The
tape in the reader is assumed to be punched in "readin mode"
format, and this IOT simulates the action of the PDP-1
readin mode hardware. The readin mode paper tape format
consists of alternate "address" words and "data" words. Each
address word (if positive) indicates the address in which to
store the data word that follows, When an address word is
encountered which has its sign bit set, readin mode terminates
and the IOT returns to the address in user core indicated
by the low~order 12, bits of this negative address word.

PUNCH

A program must own the punch in order to reference it, If

a program executes a PPA or PPB without owning the punch, the
IOT is considered illegal and the program crashes. A program



MISCELLANECOUS IOT'S

PAGE 4

may ""get" the punch even if it already owns it.

Use of punch IOT's
Get the punch:

GPUN
R1 /owned by another program
R2 /gotten

There is no trap mode for this IOT's error return.

Release the punch:

RPUN
R1 /released

There is no error return for this IOT, If a program executes
an RPUN and does not own the punch, the IOT is ignored.

Punch an alphanumeric character:

LIO /low order 8. bits
PPA

PPA takes the character in the low-order 8. bits of the
JO0 and puts it in the punch buffer. (The IO is unchanged
and the high-order 10. bits are ignored.) If there is

no room in the punch buffer, the user is '"punch-hung'"
until the buffer empties.

Punch paper tape binary

LYO (BINARD WORD
PPB /punch a binary word on paper tape
R1

PPB punches the 18.-bit contents of the IO on paper tape

as a binary word {see description of RPB for binary word
format), It is a core 16 IOT and executes three PPA's., Note
that this IOT, unlike the hardware PPB, is the inverse of
RPB,



SOROBAN

SO0T allows the user to type on the Sorocban. It is called
with the AC pointing toc a concise code text string to be
printed. The string terminates with a character code 56,
which acts as "end of message."

GET TIME AND DATE

Standard time and date format is two words: date in the

first {or AC) and time in the second for I0). The time is
represented in minutes since midnight. The date is represented
in days since 1 January 1849, which is defined as day #.

Use of time and date I0T's:
The following two I0OT's have only one return - date is in
the AC and time in the IO.

GTD /get time and date of the
startup of this program

Rl /AC = Date; IO = time
GTDu- 1 /get actual time and date

2 R1 /AC = Date; I0 = time

CLOCK IOT
The clock counis milliseconds within current minute., It
is in sync with time and date.

7 July 1966



MISCELLANEQUS 10718
PAGE 6

Uise of the clock I0T:

RCK /read millisecond clock
R1 /AC or IO holds "time"
Option:
Bit 13. = 1 /place time in IO
= /place time in AC

P-POINTER IOT*®S

P-Pointer IOT's allow a program to reference a memory
location in any of the cores. (The term "p-pointer" is
a carry-over from Exec II).

Use of p-pointer I0T's:

Read a word, given a 16.-bit address,

LAC or LIO {ADDRESS /16. bits
PEEK
R1 Jword in AC or IO

PEEK has the following options:

Bit 12 (PEEK44¢): off means take address from AC
on means take address f..om IO
Bit 13 (PEEK+2d): off means place word in AC

on means place word in U0
Write P-pointer; store 18.-bit word via 416.-bit address

LAC (ADDRESS /16 bits
LIO (Q /auantity to be deposited
WPFP

It is illegal to try to write into locations @ - 7 of
core @ or in any of the Exec cores unless sense switch
five is up.

LIST PAIRS IOT'S

Programs may communicate with Type Out Text and Event
Detector by means of the List Fairs IOT's, A complete

13 October 1966



MISCELLANEOUS IOT'S
PAGE 7

description of the why and how of these I0T’s is contained

in their respective memos. Add List Pairs adds a pair of
words to a small Exec buffer to wait for the "Get List Pairs"
call from Event Detector or Type Out Text.

Use of Add List Pairs IOT

The two-word "message", is in the AC and I0. The AC contains
a number which may be, for e§amp1e, a Teletype number or

a class and item type. The I0 is a drum address or -@ to
indicate this pair does not contain a drum address. There
are two returns for this IOT. R1 says there is no more

room in Exec'’s buffer., Note: If bit 16. is set, instead of
Ri for "full", the user gets RY; instead of R2 for "added",
the user gets Ri.

Add List Pair - Event Detector

LAC NUM
LIO DRA Jor -
ADDLP /add iist pair
R1 /no room
R2 /added

Add List Pair - Type Out Text
LAC TTHUM /Teletype number
LIO DRA /DRA of message
ADDLP<41 /2dd 1list pair
R4 /no room
R2 /added

There is no trap mode for error returns for this IOT,

13 October 1966






