The Arpanet IMP Program:
Retrospective and Resurrection

David Walden and the “IMP Software Guys”

IEEE Annals of the History of Computing

This article first sketches the history of the Arpanet IMP program,
originally developed in 1969, and enumerates a sequence of other
systems evolving from the original program over 30 years. The article
then describes the redigitization and reassembly in 2013 of the
program from a 1973 line printer listing, after which the program was
run once again on an emulation of the 1969 computer hardware.

People from Bolt Beranek and Newman
(BBN) and others have documented exten-
sively the overall Arpanet technology, includ-
ing the Arpanet Interface Message Processor
(IMP) and its algorithms.1 However, previous
writings have not focused on the decades-
long evolving history of the IMP program, as
this article does. Then in 2013, years after the
program’s effective demise, a faded 1973 line
printer listing of the IMP program was run
through a special optical character recogni-
tion (OCR) program optimized to process
such historical artifacts; an assembler was
recreated to assemble the IMP code (looking
like the modified PDP-1 Midas assembler used
in 1973); and a software emulator of the origi-
nal modified Honeywell 516 IMP hardware
platform was created. Through these steps, we
were able to run the IMP program again, a bit
of historical revival we also describe in this
article.

Arpanet IMP Program Retrospective

During its first 30 years, the original Arpanet
IMP code was reused, reimplemented, ex-
tended, and changed. The original Arpanet
IMP functions also significantly impacted
numerous more or less closely related net-
works and, to some extent, the Internet today.

Preparation, Implementation, and Installation

In 1968, BBN was preparing to bid on the
“request for quotation” from ARPA to
develop the Arpanet IMPs.? Frank Heart, Bob
Kahn, Severo Ornstein, and David Walden
were the main members of BBN’s proposal
team (although other BBN people partici-
pated), with Heart as the team leader, Kahn
with prior background in the concepts of

Published by the IEEE Computer Society

packet switching, Ornstein as the hardware
designer, and Walden as the software designer.
Shortly before the due date for BBN’s proposal®
to ARPA, Will Crowther was added to the team
as another (more senior) software person. After
BBN was awarded the contract, Ben Barker was
added as a hardware designer and Bernie
Cosell as a third software person. BBN was
awarded the IMP development contract with a
start date of 1 January 1969.*

During the first eight months of 1969,
Cosell, Crowther, and Walden developed the
IMP’s program, and Barker and Ornstein
developed BBN's modifications to the Honey-
well 516 computer to adapt it for the Arpanet
IMP function. Heart and Kahn interacted in
various useful ways with the hands-on devel-
opers. On the software side of things, Cosell
focused on the development tools and IMP
code that allowed debugging and statistics
taking, Crowther focused on the code that
handled interactions among the IMPs, and
Walden focused on the code for handling an
IMP’s connection to host computers. (None-
theless, all three knew the entire software sys-
tem inside out.>®) “Host” was the name for
computers connected to an IMP and using
the network of IMPs to communicate with
others host computers.” The Host/IMP inter-
face was specified by BBN and was known as
the “1822 interface.”®

The basic Honeywell 516 computer,” ! on
which the IMP system was based, had 32
thousand bytes of RAM and a 1-microsecond
cycle time (1 MHz).'2 It was also the size of a
refrigerator. The BBN-designed modifications
included interfaces from the 516 to inter-IMP
communication circuits and to the host com-
puters using the Arpanet, as well as a few

1058-6180/14/$31.00 © 2014 IEEE

other changes to simplify interrupt program-
ming and help with system reliability."*

However, the IMP software was not writ-
ten and assembled on the 516. Rather, the
IMP program was composed, edited, and
assembled on BBN’s PDP-1d computer. The
assembled program in octal was then output
on paper tape for loading into the IMP, via its
paper tape reader, for debugging. After BBN’s
PDP-1d was connected to the Arpanet in
1971, new IMP software could be loaded into
IMPs via the network itself.

Doing software development on the PDP-
1d computer (rather than on the 516 stand-
ing alone in the development lab) allowed
the following:

e IMP programmers could do assembly
work simultaneously because the PDP-1d
was a time-shared computer.

e IMP programmers could use the PDP-1's
powerful TECO editor'* for program com-
position and editing.

e IMP programmers could use the power-
ful macroprocessor of the PDP-1 Midas
assembler'>!® to define the instruction
codes for the BBN modifications to the
516 (as well as for defining the basic 516
instruction codes and 516 memory page
size to Midas) and to add other aids for
developing an optimized and reliable
software system.'’

e The edit-assemble cycle could be
repeated until assembly errors were gone
without carrying paper tapes to the 516
additional times.

e Assembly listings could be printed on the
line printer connected to the PDP-1d.'®

Starting around Labor Day in 1969, one
IMP a month was delivered in succession to
the University of California, Los Angeles
(UCLA), the Stanford Research Institute (SRI),
the University of California, Santa Barbara
(UCSB), and the University of Utah. Early in
1970, a fifth IMP was installed at BBN (see Fig-
ure 1), and a network control center capabil-
ity was developed by late 1971.%:%°

The Arpanet, which became operational as
a research network in early 1970, directly
transitioned to or somewhat influenced a
number of other networks.

Evolution of the Arpanet and Its

Successors and Derivatives

Between 1969 and 1975, the Arpanet ex-
panded at the rate of about 10 IMPs per year
(to approximately 60 IMPs total). Between

Figure 1. Early 1970 Arpanet map. By that time, the Arpanet spanned
locations in Los Angeles (UCLA); Menlo Park, California (SRI); Santa
Barbara, California (UCSB); Salt Lake City, Utah (University of Utah);
and Cambridge, Massachusetts (BBN).

1 July and 31 December 1975, the Arpanet
operation was phased over from ARPA to the
Defense Communications Agency (DCA) to
be run as an operational network, although it
continued to be involved in communications
R&D experiments. By 1982, there were about
90 IMPs in the Arpanet and the government
decided that the Arpanet would be the foun-
dation of the Defense Data Network (DDN).
The creation of DDN involved splitting the
existing Arpanet into two parts—one that was
still known as Arpanet and served nonmilitary
users, and one known as Milnet and served
military users. (The two parts could communi-
cate in a controlled way through mail bridges.)
Also over this period, the Arpanet (in its
pre-DDN and DDN forms) became a part of
many early Internet experiments and thus the
backbone of the Internet in its early growth
period. In 1988, steps began to dismantle the
Arpanet.?!

From relatively early in its Arpanet effort,
BBN also had aspirations for expanding upon
and exploiting the Arpanet technology
beyond the Arpanet, both elsewhere in the
government and commercially. Relatively
early on, a slightly modified version of the
516 IMP technology was deployed in the US
intelligence community.*> In 1972, BBN
organized a commercial packet-based tele-
communications carrier known as Telenet,
which originally used a version of the 516
IMP code Telenet’s programmers (not the
BBN IMP guys) converted to run on a different
Honeywell X16-series computer,®® but Tele-
net later built its own computer and wrote its
own software for that. BBN made consulting

April-June 2014 29

30

The Arpanet IMP Program: Retrospective and Resurrection

Many of the technology
approaches originally
demonstrated in the
Arpanet have become

part of the DNA of
modern data
communications (such as
the Internet).

agreements with Logica in the UK and SESA
in France for them to bid on the 516/316 IMP
technology (we describe the 316 technology
later), and BBN bid on other commercial net-
works (based on Arpanet technology) itself,
for instance at Citibank and On-line Systems.
By 1974, BBN had developed the Pluribus par-
allel processor for which it developed soft-
ware interoperable with the 516/316 IMP
system. In time, BBN started its own com-
puter company (BBN Computer Corporation,
BBNCC), which originally handled the
hardware maintenance contracts for BBN-
delivered networks (as well as trying to be a
minicomputer vendor more generally). By
1982, BBNCC changed its name to BBN Com-
munications Corporation and refocused its
activities on networking. From this part of
the company, BBN delivered many commer-
cial, military, and other networks around
the world (see http://walden-family.com/
impcode/#networklist). BBNCC supported
the 516/316 IMP technology and the Pluribus
IMP technology, and it developed new IMP
technology based on BBN’s C/30 and C/300
computers. A partial overview chart of these
various systems is available at http://walden-
family.com/impcode/hwchart.pdf.

BBN'’s Arpanet technology also influenced
the design of several non-BBN networks. The
LFK Network was a deliberate copy of the
Arpanet code but with the IMP algorithms
rewritten from scratch to and run on Norsk
Data computers.>* The founders of the Packet
Communications Corporation (who left BBN
a little before Telenet was founded) had a
copy of the IMP system listing (BBN was

IEEE Annals of the History of Computing

required to give copies to companies that
requested it for a slight handling charge) but
perhaps did not closely follow BBN’s IMP sys-
tem design. Other places—for example, at
least one company in Japan—studied the
function of the original Arpanet IMP, and it
influenced the design of their network.

More generally, many of the technology
approaches originally demonstrated in the
Arpanet have become part of the DNA of
modern data communications (such as the
Internet): dynamic routing, operation with-
out central control, packet flow control and
reliable transmission, its operating philoso-
phy, its engineering approach to standards,
and so on.

Evolution of the IMP Code

A main point of this article is to trace the evo-
lution of the original software developed for
the 516 IMP as it was reused and adapted for
several different hardware platforms over
many years. A partial overview chart of this
evolution resides at http://walden-family.
com/impcode/swchart.pdf.

The 516/316 and Network Algorithms. An
early step (1971) was reusing the 516 IMP
code on a Honeywell-316-based computer.
The 316 computer had a faster cycle time
than a 516, was not as ruggedized as the 516
but was still in a refrigerator-sized box, and
had other electronic technology changes.
The BBN-designed modifications to the 516
to turn it into an IMP also had to be made to
work for the 316. However, these hardware
changes did not require a different IMP pro-
gram than what ran on the 516. The first
application of the 316 IMP was as part of the
Arpanet Terminal IMP (TIP?®). The TIP was an
option for embedding within the physical
IMP box a capability for 63 terminals to con-
nect directly to an IMP independent of a nor-
mal host computer. This was accomplished
with additional BBN-developed software:
(a) the additional TIP software resided in
316 memory beside the IMP code; (b) it
handled BBN-developed “terminal concen-
trator” hardware to which local and dial-up
terminals could connect; and (c), from the
viewpoint of the IMP software, the “TIP host”
looked pretty much like other host com-
puters. Later, 316 IMPs were installed without
the TIP option where ruggedized 516s were
not needed. Thus, from 1971 on, this IMP
system software was thought of as being for
the 516/316 IMP.

From the time of the initial IMP installa-
tions in 1969, the Arpanet continued to
expand. As it became a more or less opera-
tional network, fixes were required and
improvements could be made to the 516/316
IMP software. Later the algorithms were reim-
plemented so Pluribus-platform-based IMPs
could function compatibly with the 516/316
IMPs, and the 516/316 IMP program was
adapted to run on the C/30 platform. How-
ever, it was years later before fundamental
networking algorithms had their initial de-
velopment on a platform other than the 516/
316 IMP platform.

We will sketch the initial round of changes
to the IMP software by quoting from a 1972
paper:26

A balanced design for a communication sys-
tem should provide quick delivery of short
interactive messages and high bandwidth for
long files of data. The IMP program was
designed to perform well under these bimodal
traffic conditions. The experience of the first
two and one half years of the ARPA Network’s
operation indicated that the performance goal
of low delay had been achieved. The lightly
loaded network delivered short messages over
several hops in about one-tenth of a second.
Moreover, even under heavy load, the delay
was almost always less than one-half second.
The network also provided good throughput
rates for long messages at light and moderate
traffic levels. However, the throughput of the
network degraded significantly under heavy
loads, so that the goal of high bandwidth had
not been completely realized.

We isolated a problem in the initial network
design which led to degradation under heavy
loads.?”?® This problem involves messages
arriving at a destination IMP at a rate faster than
they can be delivered to the destination Host.
We call this reassembly congestion. Reassembly
congestion leads to a condition we call reassem-
bly lockup in which the destination IMP is inca-
pable of passing any traffic to its Hosts. Our
algorithm to prevent reassembly congestion
and the related sequence control algorithm are
described [later in the quoted paper].

We also found that the IMP and line band-
width requirements for handling IMP-to-IMP
traffic could be substantially reduced. Improve-
ments in this area translate directly into incr-
eases in the maximum throughput rate that an
IMP can maintain.

Another set of changes was made to
expand the capabilities rather than the per-
formance of the IMP:

The size of the initialization code and the asso-
ciated tables deserves mention. This was origi-
nally quite small. However, as the network has

grown and the IMP’s capabilities have been
expanded, the amount of memory dedicated
to initialization has steadily grown. This is
mainly due to the fact that the IMPs are no
longer identical. An IMP may be required to
handle a Very Distant Host [a host at the other
end of a communications circuit rather than
directly wired to the IMP], or TIP hardware, or
five lines and two Hosts, or four Hosts and
three lines, or a very high speed line, or, in the
near future, a satellite link. As the physical per-
mutations of the IMP have continued to
increase, we have clung to the idea that the
program should be identical in all IMPs, allow-
ing an IMP to reload its program from a neigh-
boring IMP and providing other considerable
advantages. However, maintaining only one
version of the program means that the
program must rebuild itself during initializa-
tion to be the proper program to handle the
particular physical configuration of the IMP.
Furthermore, it must be able to turn itself back
into its nominal form when it is reloaded into
a neighbor. All of this takes tables and code.
Unfortunately, we did not foresee the prolifera-
tion of IMP configurations which has taken
place; therefore, we cannot conveniently com-
pute the program differences from a simple
configuration key. Instead, we must explicitly
table the configuration irregularities.

John McQuillan has also said the follow-
ing about that era, during which checksums
and other code robustness devices were put
into the code:*®

[A] significant part of the effort I put in to
the IMP program from 1971 to 1973 had to
do with hardware/software interactions. The
interrupt system of the 516, and the direct
memory channels turned out to be a key focus,
both as strengths of the hardware, and sources
of issues and failures ... One of the goals in that
period was to make the IMP more resilient.

After the noted changes were made, the
major effort of the next few years was redoing
the original Arpanet routing as the network
grew and the limitations of the original algo-
rithm were discovered. First there were small
modifications, and then McQuillan looked at
the issues in detail.>° Eventually, McQuillan
and others developed a new routing algo-
rithm®'? that the IMP programmers imple-
mented. The original routing algorithm was
useful for getting the Arpanet up and run-
ning quickly and supporting, more or less, its
first few years of operational use. The new
routing algorithm lives on today in the Open
Shortest Path First (OSPF) routing algorithm?*?
used throughout the Internet. Although not
unique to the routing transition, the routing

April-June 2014 31

32

The Arpanet IMP Program: Retrospective and Resurrection

transition was an instance in which incom-
patible releases of the IMP software had to be
distributed. This added significant complexity
to the release effort (an interim release had to
be created to allow moving between the prior
and new operational releases).

Pluribus. As the 516/316 IMP software
evolved, some of the original 516 IMP devel-
opment team moved on (and were joined
by other engineers and programmers) to de-
velop the Pluribus multiprocessor system. The
Pluribus was based on a Lockheed Sue pro-
cessor but most of the hardware system was
developed and fabricated by BBN (which also
acquired SUE processor manufacturing). With
a different instruction set and a much differ-
ent computer architecture, the IMP algo-
rithms had to be completely recoded for the
Plurbus-based IMP.>*?° In addition “reliability
code” was developed to allow a Pluribus IMP
to keep functioning as a packet switch in the
face of various bits of its hardware failing, such
as a processor or memory.>*3” This was so suc-
cessful that there was no simple off switch for
the machine; a program had to be run to shut
parts of the machine down faster than it could
“fix itself” and keep running.

The Pluribus IMPs and 516/316 IMPs ran
together compatibly in the Arpanet and later
in DDN. In particular, the complex transition
to the new Arpanet routing algorithm men-
tioned previously had to be done in the 516/
316 IMP and Pluribus IMP in parallel.

MBB-Based Systems. In 1978, BBN devel-
oped its Microprogrammable Building Block
(MBB) computer, which users could code to
perform different functions.3®3° The Honey-
well 316 computer was going out of produc-
tion and the Honeywell 716 was not suitable
for the IMP task. Thus, microcode was created
for the MBB to make it look like a 316 IMP,
and by the fall of 1979, the MBB-based sys-
tem was functioning as an IMP packet switch
called the C/30. The 316 IMP code was not
changed much for its transition to the MBB
emulating the 316 in microcode. (Another
version of the MBB was microcoded to more
or less directly execute the C programming
language in which Unix was written, and
these Unix machines, called C/70s, were used
in networks of C/30 packet switches as termi-
nal concentrators—like the TIP option for the
316-IMP—and to run network-control-center
software.) Almost 1,500 MBB-based systems
were installed in networks delivered by BBN.
Most of this work was done by BBNCC.

IEEE Annals of the History of Computing

The efforts in the early years of BBNCC pri-
marily consisted of adding capabilities to the
edges of a C/30 network. One such effort
(circa 1982) was adding an interface for X.25
hosts to the IMP software. The X.25 interface
initially ran on top of the standard Arpanet
1822 host interface.*® This system simultane-
ously supported the Arpanet 1822 and X.25
interfaces. Around the time the X.25 interface
was added, BBNCC began calling the system a
packet-switch node, or PSN (more consistent
with usage in the networking marketplace).
BBNCC also developed new TIP-like terminal
concentrators for this line of packet switches,
called terminal access controllers or TACs (ca.
1980-1982),*"*? and packet assembler/disas-
semblers or PADs (1981-1983), which were
terminal concentrators in a computer sepa-
rate from the packet switch.**

During the 1981-1983 period, BBNCC
also had to deal with the conversion of the
networks it was operating from the original
Arpanet host-to-host protocol (the Network
Control Protocol, or NCP) to the use of TCP/
IP as the host-to-host protocol.** BBN had to
adapt its own systems functioning as hosts to
TCP/IP and was involved in staging the tran-
sition for other hosts.

In 1982-1983, the IMP code underwent a
major change as new microcode (known as
the Native Mode Firmware System, or NMFS)
was written for the MBB. This microcode
allowed the IMP software to run on a highly
improved 316 (with a 20-bit rather than
16-bit address space, scheduling and process-
management functions moved into the
microcode, external interface drivers that
serviced interrupts and moved bytes from the
hardware to memory, and some additional
instructions for queuing functions).**

In 1983-1985, BBNCC built a new hard-
ware machine, the C/300. This was a faster
MBB, but with the customizations for the
Honeywell emulation built into the hardware
rather than being in microcode, so it could
not run in C/70 or other hardware modes.*®
This was the workhorse in the DDN upgrade.

Note that many of the described MBB-
based developments concerned running the
IMP code on a succession of upgraded plat-
forms and adding new capabilities at the
periphery of a network, such as handling X.25
hosts and communication with a rewritten
network control center program. Naturally,
there were also upgrades to the basic packet-
switching algorithms. Then, in 1985-1987,
there was a major change in the basic packet-
switching algorithms: the end-to-end code for

the packet switch was rewritten to embed
X.25 as part of the basic system rather than
having it ride on top of the Arpanet’s 1822
interface. This was the PSN 7 version of the
system.

In 1987-1989, another major change to
the basic packet-switching algorithms was
made: the packet-switching store-and-
forward code was redone to include conges-
tion control. This was the PSN 8 version of
the system.

BBN continued delivering operations net-
works for several more years but over time
divested itself of its operational network busi-
ness. The original IMP program from which
so much had evolved was a thing of the past.

Arpanet IMP Program Resurrection
Between 2002 and 2013, efforts were made to
recover a digital copy of the IMP program. To
the best of our knowledge, no computer file
of the program still existed, but we did have a
1973 line printer listing. A good scan of that
old listing posted on the Web would be useful
to computing historians, and other possibil-
ities could be imagined if the listing could be
digitized to the point where it was computer
readable. Here we describe those efforts.

Recovering the 1973 516/316

IMP System Listing

In 2002, Paul Wexelblatt, who had been a
member of BBN’s Arpanet IMP team at one
point, was cleaning out his basement. He
asked Bernie Cosell and Dave Walden
whether they wanted any of his old BBN
reports, manuals, and program listings,
which included a September 1973 listing of
the 516/316 IMP program, IMP version 3050.
It was agreed that Walden would pick up
some boxes of materials from Wexelblat's
house, keep them for a while as he worked on
the BBN computing history book,*” and then
offer Cosell anything he wanted for perma-
nent possession. In particular, Cosell asked
that the IMP program listing be passed to
him, and eventually it was.

In 2009, Tony Michel (also a BBN Arpanet
team member) began to think about running
the IMP code again on simulated machines,
and Cosell passed the IMP program listing to
Michel for scanning and OCR. Over the next
couple of years Michel did a lot of scanning
work but none completely successfully, and
he passed the listing to Walden to continue
attempts at scanning.

In 2012, Jack Haverty (who early in his
career had worked at BBN, close to the IMP

Between 2002 and 2013,
efforts were made to
recover a digital copy of
the IMP program.

system) began asking questions about the
Arpanet IMP software system for a legal dis-
pute about prior art for which he was to be an
expert witness. Haverty’s idea was that the
IMP system represented an example of prior
art that could help refute an invention claim
from a later date. Considerable discussion
went on between Harverty, Cosell, Walden,
and a few other ex-BBN IMP people about
exactly what the program did. These discus-
sions continued into 2013.

At some point, the idea arose (among
Haverty, the law firm, and the firm’s other
technical experts) of getting a good scan of
the listing and OCR’ing it to recover a source
code file that could perhaps be assembled
and run on simulated IMP machines. Walden
still had the listing in hand and offered to
take it to the Boston office of the law firm for
which Haverty was consulting to get a good
quality scan done. (All the scans and listings
mentioned in this section and the next are
available for study at http://walden-family.
com/impcode/.)

However, it was not possible to get decent
OCR from the scan. Several OCR programs
were tried but none produced good results.
(Still, Walden has posted the scan of the list-
ing on his website with other historical IMP
system content.)

Hence, Charlie Neuhauser, who was a
technical consultant to the law firm, and his
colleague Tom Kilbourn hired someone to
retype the entire listing, including the octal
representation of the assembled program.
They then had other people proofread the
entire listing—one person reading out loud
the newly typed version and the other person
checking that against the scan. This caught
about 40 errors in the retyped listing, and
Charlie caught another 10 (for example, the
letter “O” substituted for zero, and the letter
“1” for the number “1”) while trying to under-
stand the code. The typing job was amazing.

In parallel, James Markevitch became
aware of the scan of the IMP system listing on

April-June 2014 33

The Arpanet IMP Program: Retrospective and Resurrection

Walden’s website and ran it through his side-benefit, this process results in a usable
home-built OCR program optimized for faint assembler for this old architecture.

line printer listings. James explained as

follows:*® Neuhauser and his team used James’s

assembly-checked OCR output to check and

In about 2006 I was attempting to OCR some correct their retyped version of the listing—

34

old computer listings and found that none of only another three or so errors. Here is

the commercial software packages handled
these old listings very well. As a result, I wrote
a set of software optimized for processing these
old computer listings. I used that software to
convert the IMP listing scan into a plain
text file.

Old listings have a lot of artifacts that
need to be dealt with by the OCR software
including broken characters, horizontal and
vertical shifting of the characters due to
mechanical imperfections in the old print-
ers, light or inconsistent printing due to
faded ribbons, and even dot matrix character
representations used by some printers,
among others. Add to this the fact that the
listings are often many decades old (the old-
est one I converted was from the late 1950s)
and have faded, have been scribbled on, and/
or have accumulated stains. Furthermore,
the scans are often done at low resolution
and many times haven’t been fed properly
(or are hand-placed) which skews the pages
significantly.

The software uses a variety of pattern recog-
nition and geometric techniques to differenti-
ate between characters and create models of
expected character positions. Each algorithm
is designed to be self-refining and is highly tol-
erant of noise, allowing the software to extract
character images from the artifacts mentioned
above.

I also created a Midas assembler*” and ran it
on the processed listing. The output it gener-
ates is identical to the listing. This involved
reverse engineering the apparent behavior of
Midas since it is similar, though not identical,
to the PDP-6 and PDP-1 versions. The Midas
assembler is written in Per].>°

I have done this same sort of thing
numerous times: OCR a listing, convert to a
file that can be input to an assembler,®! write
an assembler, assemble, compare the output
with the OCR’ed listing, and iterate 2 fixing
any assembler issues or OCR errors until the
OCR output and the assembler output
match. Because of the redundant informa-
tion in assembly listings (both source code
and the object code are contained in it), this
iteration works very well to quickly catch the
occasional OCR errors in all but the com-
ment fields of the listings. Even an OCR
error every few pages quickly jumps out
with this process. Many old assemblers had
undocumented features or behavior and a
listing that uses a rich set of the assembler
features will expose those behaviors—as a

IEEE Annals of the History of Computing

Neuhaurser’s story:>>

Initially, I went through the entire listing and
extracted all the IO opcodes. From this, the
Honeywell manuals®'® and a review of the
functions in the listing, I managed to recon-
struct most of the functional aspects of the I/O
interface in the sense that I knew there was an
OCP or SKS code that did something, but I did
not always know what it did. The original
ARPA net proposal document® was very, very
helpful and in my experience was a model of
descriptive excellence. From this review I
wrote a small document that described the 10
codes and what I thought they did.>* Of
course, in some cases it was just rank
speculation.

Even without the emulator extension, Tom
and I managed to step the emulator through
the stand alone debugger and with a few selec-
tive modifications to the code (e.g., killing the
watchdog timer) managed to get the stand-
alone debugger to work. As a guide to the
debugger we used the big three page comment
section that preceded the standalone debugger
[in the IMP code listing] and found that all the
functions we could test (i.e. those that did not
use the network) seemed to function as adver-
tised. When looking through the code one
thing I found very helpful was the concord-
ance, which was almost as good as using an
editor to search the code.

At this point I realized that we would really
need some help on the emulator and brought
in Robert Armstrong, who had some really
good background working with [Digital] PDP
[computer] emulation. For a while he even
sold a PDP-8 front panel that you could con-
nect to your emulator and key in your code if
you wanted to. One thing that Bob really knew
is how the simh computer emulator® was sup-
posed to be used. By this I mean that he knew
that you needed to add commands to the emu-
lator so you could control the state of certain
things that would normally be hardware con-
trolled. For example, he made the IMP number
adjustable. Also he had commands to config-
ure various devices and to disable them so that
we could debug around them.

One thing he did early on was to formalize
the extensions he was going to make so that we
could all see what the end product was going to
be. Ithought that this was a very smart thing to
do because I was sort of focused on “get it
done” and he was focused on “get it right,”
which was the correct thing to focus on.

We had a number of problems initially. As I
see it, the IMP code is not your ordinary garden
variety code. In some ways it is more complex
than a typical small operating system.

Because timing is so important in the IMP
code, the emulator must be more accurate
than what we would normally expect for
simulating an old computer running its soft-
ware. In the IMP, as I understand it, you have
to do things at the required pace, not too fast
and not too slow. This seems to me to have
been the source of many of the problems.
Bob spent quite a bit of time experimenting
to get the emulator timing exactly right. The
other thing that impressed me about the IMP
code is that it made use of every known trick.
Not just self-modifying code for simple
things like jump tables, but self-modifying
code to control the state of execution. Also
the basically interrupt driven nature of the
code makes it inherently difficult to deal
with. This of course is where emulation really
helps because you have a complete visibility
into the code that was not available in 1973.
Several times Bob wrote simple extensions to
the emulator that would allow us to trap on
certain conditions that would have been
impossible to do even on the real system. For
example, he could trap on a particular data
write pattern. In the emulation of these old
machines the speed advantage of emulation
is so great that it is almost like having a logic
analyzer attached to the IMP.

One thing that took me some time to
understand was what was the 1973 code.
Although I assumed that it was actual released
code, I always kept in the back of my mind
that it might be some sort of test branch from
the mainline code and might actually contain
bugs. As I worked with the code, and especially
when you and the others managed to advance
it so far, I became more confident that it was
production code.

On a philosophical level it is amazing that
this was possible, not just technically, but also
from a practical standpoint. Without a doubt
the Arpanet was a seminal project. Certainly
there were other store and forward systems in
use in the same or earlier time frame. I worked
on one at Bell Labs. But the Arpanet was the
one that was easily scalable (you may not agree
given how hard you worked on the code). It
was also the one that was universal in the sense
that it could connect any sort of device. Of
course, I imagine that no one knew what
would results when the first machine was
turned on. Otherwise, the original code would
have been saved. That anything still exists is
remarkable. Technology advances so rapidly
that even important contributions like the
Arpanet are lost after only a few years.
Although no one thing is responsible for the
Internet as we know it today, Arpanet was cer-
tainly important to getting things off the

ground and should be remembered for the
truly amazing outcome.

IMP Software Cycles Again

As mentioned previously, Bob Armstrong
built the simulator for the 516/316 IMP. He
started with the existing Honeywell 316 sim-
ulator®® based on the simh simulator,> and
then he modified the H316 simulator to sim-
ulate the instructions and interfaces BBN
added to the 316 computer to run the IMP
system'! as part of the IMP system develop-
ment.'>8 The software kit for Bob’s IMP sim-

ulator is available on the Web. >’
Here is Bob's version of the story:*®

I originally knew nearly nothing about the
IMP or the H316, but I am quite familiar with
simh. When Tom and Charlie started using
simh, I got involved by answering some of
their questions. They were trying to demon-
strate the IMP software on simh but were being
stymied by the fact that a large chunk of the
IMP hardware was custom made by BBN and
simh naturally knew nothing about those
devices. Eventually the topic of modifying
simh came up and I was asked if I thought I
could do it.

The then current simh was able to simulate
a standard H316 CPU including a number of
peripherals—disk drives, magtape, line print-
ers, etc.—none of which were used by the IMP
software. On the other hand, the IMP software,
although it could run on a standard H316 CPU,
required a number of special peripherals none
of which simh implemented. Those include:

e A BBN engineered synchronous modem
(e.g., Bell 303) interface. This was a fairly
sophisticated interface that not only could
transfer data directly to and from memory
using DMA, but could also frame packets,
compute and verify CRCs, do DLE stuffing,
and more.

e A BBN engineered synchronous serial host
interface. This is another sophisticated
interface that could handshake with the
host, detect various host ready and error
conditions, convert between the native
host word size and the 16 bit H316, and
more.

e A BBN engineered real time clock. Ironi-
cally, Honeywell offered a real time clock
option for the H316 CPU already, but the
IMP used its own version that was similar
to, but not compatible with, the Honey-
well model.

e A BBN engineered watch dog timer
(WDT). This was a fairly simple device
which would fool the CPU into taking a
memory protection fault trap if a certain
time interval elapsed without the WDT

April-June 2014 35

36

The Arpanet IMP Program: Retrospective and Resurrection

being reset. Honeywell offered a memory
management option for the H316, but this
was unused and the corresponding hard-
ware absent on the IMP, and reusing the
memory protection fault trap was a simple
way of getting a non-maskable interrupt.

e A BBN engineered “task shuffling” inter-
rupt, which was used by the IMP software
to implement multitasking.

e A BBN engineered light panel, which con-
tained sixteen status lamps.

e Several BBN added miscellaneous instruc-
tions. These included instructions to
return an IMP node number, which was
hardwired with jumpers in each IMP’s
hardware and instructions for the MLC
[TIP multi-line controller] which was not
used in the part of the IMP code we were
demonstrating and which we elected not
to implement.

e Lastly, the IMP used an individually vec-
tored priority interrupt system. This was
actually a standard Honeywell option for
the H316 and wasn’t engineered by the
BBN team, however the existing simh was
unable to simulate this option and it had
to be added.

This was a considerable number of devices
and features that needed to be added to simh,
but in principle at least most of them were
fairly straight forward to implement. The big-
gest issue was a lack of concrete information
about how any of these devices were actually
supposed to work. Charlie read the IMP source
code and made a list of all the I/O instructions
and made an initial guess as to what they were
supposed to do.>* Later on the BBN IMP guys
found and passed along more period docu-
mentation from BBN>%° that clarified more of
it, but there were still a few things we only dis-
covered the hard way, by stepping through
execution of the IMP code.

The modem emulation was particularly dif-
ficult to get right and I ended up completely
rewriting that part at least once. The initial
implementation used TCP to tunnel a virtual
modem connection between two simh instan-
ces, however with TCP network delays are
unpredictable and inconsistent, and that
proved to be a huge problem. The IMP code is
extremely sensitive to modem timing, and
even goes to the trouble of measuring, using
the real time clock, the exact time it takes to
send a message. Knowing the time and the size
of the message, the IMP code computes the
effective throughput for each modem line, and
it needs that number to fall within a very nar-
row window. If the modem isn’t running at
the right speed, the IMP will declare the line
“down” and attempt to report the problem
back to the Network Control Center. This was,
as the BBN IMP guys explained to me, because

IEEE Annals of the History of Computing

back in the early 1970s an important feature of
the IMPs was being able to detect something
apparently wrong with inter-IMP lines as early
as possible in order to be able to report the
problem to AT&T Long Lines. The only solu-
tion for the simulator was to rewrite the
modem to use UDP, which gives shorter de-
lays and more consistent timing, and to fur-
ther virtualize the modem simulation and tie
it to the simulated real time clock. This makes
the modem timing appear completely con-
stant to the IMP code, even if in actuality it
isnot.

Even with all the IMP specific issues we had,
it was also possible that an apparent bug in run-
ning the IMP program was the result of a
change we’d made to simh. One especially
nasty problem, that took a couple of days to
track down, turned out to be a very subtle bug
in simh’s modeling of the TTY interrupt timing.
There was a particular combination of Teletype
I/0O instructions which would not have inter-
rupted on a real H316, but generated an imme-
diate interrupt in simh. This a bug in simh,
despite simh already being able to run a number
of other generic H316 programs including the
official Honeywell diagnostics. Apparently
nothing other than the IMP code used this par-
ticular combination of Teletype I/O, and the
bug was never discovered until we came along.

All told, modifying simh to run the IMP
code proved to be quite a bit more challenging
than I'd expected. I think I originally promised
Charlie that the job would take about two
weeks, and in the end it took closer to two
months.

By the summer of 2013, with interaction
with Neuhauser, Barker, Cosell, Michel, and
Walden, Armstrong had refined his under-
standing of how the IMP hardware and soft-
ware worked and had the IMP simulator
working reliably. Three IMPs in a series could
communicate with each other, thus demon-
strating that store-and-forwarding of packets
and dynamic routing worked; one could use
the simulated Teletype of one IMP to inspect
and change memory of another IMP, thus
indicating that most of the host-handling
code worked; IMPs could reload from each
other; and so on. The 1973 version of the
IMP, from four years after the IMP code origi-
nally cycled in 1969, was running again.

On 5 July, the simulator was configured
with the following 5-IMP network:

IMP 1 connected to IMPs 2 and 3
IMP 2 connected to IMPs 1, 3, and 4
IMP 3 connected to IMPs 1 and 2
IMP 4 connected to IMP 2 and 5
IMP 5 connected to IMP 4

This configuration was representative of
the first four- and five-node Arpanet configu-
rations in 1969 and early 1970, as Figure 1
shows: IMP 1 = UCLA, IMP 2 = SRI, IMP 3 =
UCSB, IMP 4 = University of Utah, and IMP
5 = BBN. The simulated IMPs were started
in numeric order representing the order of
their actual installation approximately 43
years ago.

A few days later, a pair of simulated IMPs
communicated from different computers
using the Internet as a telephone line between
them.

As a result of the effort to make IMP ver-
sion 3050 run again and the consequent deci-
sion to write this note, we put out a call for
inputs to other members of the Arpanet IMP
development and maintenance community.
Thus, we now have a 1971 July NCC listing, a
1971 December IMP listing, and a 1974 mid-
year listing, which John McQuillan had in his
personal archives. John scanned them, and
James Markevitch OCR’ed them, making
additions to his Midas IMP-code assembler as
necessary. These listings also have been
posted on the Web.?*¢1®2 We also have a
scan of a listing (found on the Internet) for
a version of the Pluribus IMP (see http://
walden-family.com/impcode), and we have
listings on microfiche (preserved by Cliff
Romash) of the PSN 7 and PSN 8 derivatives
of the IMP system.

Conclusion

The first half of this article is a relatively
straightforward historical account, albeit an
extended anecdote collected from many peo-
ple rather than a formal piece of computing
history research. The second half describes an
effort that is part of a relatively new area of
computing history work (that some call
“living history” and others call “retro histo-
ry”), in which artifacts from computer his-
tory are brought back to life. This latter part
of the story might not be finished—we plan
to continue the effort to collect, organize,
and make such IMP artifacts available to the
computing history world.

Acknowledgments

The 1969 BBN Arpanet IMP development
team (and the evolving team members over
the years) called themselves “the IMP guys,”
a name that stuck even after women joined
the team. Many people have helped write or
provided information to this article, and
thus we think it is an appropriate homage for

the article’s author line to include the “IMP
Software Guys.” We include within this des-
ignation the non-BBN people from Silicon
Valley who participated in the resurrection
of the original 516 IMP program in
2012-2013. Many of these contributors to
this article and to the work described herein
are listed at http://walden-family.com/
impcode/#participants. No doubt some peo-
ple have been left off that list; we thank
them too.

We also thank the anonymous editor and
referees for their suggestions for improve-
ment. In addition, Andy Russell and James
Cortada read one draft of this article and
made suggestions, and Jason Armistead and
David Gesswein pointed out an error in
another draft.

References and Notes

1. FEE.Heartetal., “The Interface Message Pro-
cessor for the ARPA Computer Network,” AFIPS
Conf. Proc., vol. 36, 1970, pp. 551-567; http://
walden-family.com/public/1970-imp-afips.pdf.

2. Arpanet Request for Quotations, Defense Supply
Service-Washington, Dept. of the Army, 29 July
1968; http://walden-family.com/bbn/arpanet-
rfq.pdf.

3. Bolt Beranek and Newman, “Interface Message
Processors for the ARPA Computer Network,”
BBN proposal no. IMP P69-IST-5, 6 Sept. 1968;
http://walden-family.com/bbn/arpanet-prop-ocr.
pdf.

4. See “Networking at BBN,” http://walden-family.
com/bbn/#networking, for background infor-
mation about the BBN IMP development.

5. BBN, Initial Design for Interface Message Process-
ors for the ARPA Computer Network, BBN report
1763, 1 Jan. 1969; http://walden-family.com/
impcode/1969-initial-IMP-design.pdf.

6. BBN, Operating Manual for the Interface Message
Processors: 516 IMP, 316 IMP, TIP, BBN report
1877. This manual was revised several times.
The April 1973 revision is at http://walden-
family.com/impcode/bbn-report-1877.pdf.

7. By this definition, a personal computer con-
nected today to a router or a company web-
server connected to a router are host
computers, using the internetwork of routers to
communicate with other computers.

8. R.E. Kahn, Interface Message Processor: Specifica-
tions for the Interconnection of a Host and an IMP,
BBN report 1822, 1 May 1969. This report was
revised a number of times over the years. The
January 1976 revision is available at http://

April-June 2014 37

The Arpanet IMP Program: Retrospective and Resurrection

10.

11.

12.

13.

14.

15.

16.

17.

18.

38

walden-family.com/impcode/BBN1822_
Jan1976.pdf.

. Honeywell, Series 16 Hardware Documentation,

Apr. 1973; http://walden-family.com/impcode/
70130072176C_316_CPU_Descr_Apr73.pdf.
Honeywell, Models 316 and 516 Programmers’
Reference Manual, no. 1970; http://walden-
family.com/impcode/70130072156_316_
516_PgmrRef_Nov70.pdf.

Honeywell, Intermodem [mistitled, should be
“Interface”] Processor System Instruction Manual
(Honeywell documentation of the BBN-design-
Honeywell-fabricated changes to the 515 com-
puter to make it an Interface Message Pro-
cessor), Jan. 1970; http://walden-family.com/
impcode/imp-hardware.pdf.

By way of comparison, a typical laptop com-
puter in 2013 has a RAM size measured in giga-
bytes and a cycle time measured in gigahertz
(although it is hard to make valid cycle and
instruction time comparisons given how differ-
ent computer architectures are now versus
then). Itis hard for some people to imagine
today how an entire packet-switching system
could be implemented in a computer as small as
the 516 IMP.

There is more about the modifications in the
“IMP software cycles again” section.

D. Murphy, “The Humble Beginnings of TECO,”
IEEE Annals of the History of Computer, vol. 31,
no. 4, 2009, pp. 110-115.

R.A. Saunders et al., MIT PDP-1 Midas memo,
date unknown, http://archive.org/details/
bitsavers_mitrlepdp1_1535627.

BBN, “Hospital Computer Project,” PDP-1 Midas
manual, memo no. 6-E: programming software
status report, 1 May 1966; http://walden-family.
com/impcode/bbn-1966-pdp1d-midas-
manual.pdf.

B.P. Cosell,].M. McQuillan, and D.C. Walden,
“Techniques for Detecting and Preventing Mul-
tiprogramming Bugs,” Minicomputer Software,
J.R. Bell and C.G. Bell, eds., North-Holland
Publishing, 1976, pp. 301-306; http://walden-
family. com/impcode/detect-interrupt-
bugs.pdf.

As an aside, the original paper about the IMP
from the BBN developers' describes editing
on the PDP-1 and outputting a paper tape of
the symbolic assembly code and assembling
that on the Honeywell 516. We did that only
a few tedious times before switching to
assembly on the PDP-1d. By the time the
1970 paper was written, we were a year
beyond assembling on the Honeywell
machine. Leaving that language in the

paper, taken from a quarterly report to ARPA,
was an oversight.

IEEE Annals of the History of Computing

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

. A.A. McKenzie et al., “The Network Control

Center for the ARPA Network,” Proc. 1st Int’|
Conf. Computer Comm., S. Winkler, ed., 1972,
pp. 185-191; http://walden-family.com/
impcode/iccc-1972-nmc.pdf.

Network Control Center program listing, version
52, May 1971, written by John McQuillan and in
2013 OCR’ed by James Markevitch from a scan
by John from his archives; http://walden-family.
com/impcode/ncc52 and http://walden-family.
com/impcode/ncc52conc.txt.

A. McKenzie and D. Walden, “The ARPANET, the
Defense Data Network, and the Internet,” Ency-
clopedia of Telecommunications, vol. 1, Marcel
Dekker, 1994, pp. 341-376; http://walden-
family.com/public/encyclopedia-article.pdf.
BBN, COINS Support and Maintenance Guide,
BBN TM-CC-0344, undated.

Honeywell’s X16 series of computers also
included the 116, 316, 416, and 716.

N.J. Liaaen and D.C. Walden, “Remembering
the LFK Network,” IEEE Annals of the History of
Computing, vol. 24, no. 3, 2002, pp. 79-81;
http://walden-family.com/ieee/Ifk-2002-
annals.pdf.

S.M. Ornstein et al., “The Terminal IMP for the
ARPA Computer Network,” AFIPS Conf. Proc.,
vol. 40,1972, pp. 243-254.

J.M. McQuillan et al., “Improvements in the
Design and Performance of the ARPA
Network,” Proc. AFIPS Fall Joint Computer Conf.,
1972, pp. 741-754; http://walden-family.
com/impcode/1972-improvements-paper.
pdf.

R.E. Kahn and W.R. Crowther, A Study of the
ARPA Network Design and Performance, BBN
report 2161, Aug. 1971; http://walden-family.
com/impcode/1971-Kahn-Crowther-
performance-study.pdf.

R.E. Kahn and W.R. Crowther, “Flow Control in a
Resource Sharing Computer Network,” Proc.
2nd ACM IEEE Symp. Problems in the Optimization
of Data Comm. Systems, 1971, pp. 108-116;
http://walden-family.com/impcode/1971-
Kahn-Crowther-performance-study.pdf.

J.M. McQuillan to D. Walden, email, 5 Aug.
2013.

J.M. McQuillan, Adaptive Routing Algorithms for
Distributed Computer Networks, BBN report
2831, 1 May 1974. (This was also McQuillan’s
PhD thesis.)

J.M. McQuillan, 1. Richer, and E.C. Rosen, “The
New Routing Algorithm for the ARPANET,” IEEE
Trans. Comm., vol. 28, no. 5, May 1980,

pp. 711-719,

J.M. McQuillan, “The Birth of Link-State
Routing,” IEEE Annals of the History of Comput-
ing, Jan.-Mar. 2009, pp. 68-71.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

See http://en.wikipedia.org/wiki/
Open_Shortest_Path_First.

F.E. Heart et al., “A New Minicomputer/
Multiprocessor for the ARPA Network,” AFIPS
Conf. Proc., vol. 42,1973, pp. 529-537.

S.M. Ornstein et al., “PLURIBUS—A Reliable
Multiprocessor,” AFIPS Conf. Proc., vol. 44,
1975, pp. 551-559.

D. Katsuki et al., “Pluribus—An Operational
Fault-Tolerant Multiprocessor,” Proc. IEEE,

vol. 66, no. 10, 1978, pp. 1146-1159.

D. Walden and R. Nickerson, eds., A Culture of
Innovation: Insider Accounts of Computing and
Culture at BBN, Waterside Press, 2011, pp.
534-538; http://walden-family.com/bbn/.
M.F. Kraley et al., “Design of a User-Microprog-
rammable Building Block,” Proc. 13th Ann.
Microprogramming Workshop, Colorado Springs,
1980, pp. 106-114.

Walden and Nickerson, eds., A Culture of
Innovation, pp. 527-528.

BBN, C/30 PSN X.25 Interface Specification, BBN
report 5500, release 3, 1 Nov. 1983.

BBN, Quarterly Technical Report—TAC
Functional Specification, BBN report 4401,

1 June 1980.

BBN, TAC Users’ Guide, BBN report 4780, 1 Oct.
1982.

BBN, PAD Performance Evaluation, BBN-TM-CC-
0267, 21 Oct. 1986.

). Postel, NCP/TCP Transition Plan,

IETF RFC 801, Nov. 1981, http://tools.ietf.org/
html/rfc801

BBN, C/30 Native Mode Firmware System Pro-
grammer’s Reference Manual, C/30E NMFS, BBN
report 5000, rev. 2, Microcode Version m7ul3,
1 Aug. 1984.

BBN, Release Reference Manual: C/300 Update
Software, BBN report 6289, Mar. 1986.

Walden and Nickerson, eds., A Culture of
Innovation.

J. Markevitch, to D. Walden, emails, 21 Sept.
and 22 Oct. 2013.

PDP-1 Midas was used to assemble IMP program
from 1969 on, as described in the “Preparation,
Implementation, and Installation” section.

J. Markevitch, “midas516.pl assembler for the
Honeywell DDP-516/316 computers,” Perl list-
ing of Midas for the ARPANET 516 IMP and NCC
programs, 2013; http://walden-family.com/
impcode/midas516.txt.

IMP 3050 program file, as created by J. Marke-
vitch from his OCR of the IMP 3050 listing
scan, http://walden-family.com/impcode/
imp3050.txt

Makefile from |. Markevitch that runs the IMP
3050 program file through his Midas assembler
(see the prior two entries in this list); http://

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

walden-family.com/impcode/, http://walden-
family.com/bbn/Makefile.txt

C. Neuhauser to D. Walden, email, 30 Aug. 2013.
See http://walden-family.com/impcode/
neuhauser-summary.pdf.

Developed by Robert Supnik, simh is a computer
emulation system that runs on many different
platforms with various operating systems and
has been used as the basis for emulation of
many different computers. It is widely used by
people working to preserve software for com-
puters that are no longer made. See http://
simh.trailing-edge.com/ and https://github.
com/simh/simh.

R.M. Supnik, “H316 Simulator Usage,” 1 Dec.
2008; http://simh.trailing-edge.com/pdf/
h316_doc.pdf.

A listing of demonstration software for the
original 1973 ArpaNET IMP is available

at http://simh.trailing-edge.com/software.
html.

R. Armstrong to D. Walden, email, 31 Aug.
2013.

The Interface Message Processor, BBN TIR89, Feb-
ruary 1973, http://walden-family.com/impcode/
IMPSYS-Document-with-flowcharts.pdf.

BBN, The Interface Message Process, BBN report
TIR89, update of Nov. 1973; http://walden-
family.com/impcode/Technical_Information_
Report_89.pdf.

IMP program listing, version 2514, Dec. 1971,
OCR’ed in 2013 by Markevitch from a scan by
McQuillan from his archives; http://walden-
family.com/impcode/mp2514.txt and http://
walden-family.com/impcode/imp2514conc.txt.
IMP program listing, version 3147, July 1974,
OCR’ed in 2013 by Markevitch from a scan by
McQuillan from his archives, http://walden-
family.com/impcode/imp3147.txt, http://wal-
den-family.com/impcode/imp3147malloc.txt,
and http://walden-family.com/impcode/
imp3147patch.txt.

David Walden retired from BBN in 1995. At
BBN he had been one of the three computer pro-
grammers who originally developed the Arpanet
IMP computer software. In retirement, he has
been an IEEE Computer Society volunteer in the
area of computing history; see http://walden-
family.com/ieee/, which also includes contact
information for him.

Selected CS articles and columns are also

cn available for free at http://ComputingNow.
computer.org.

April-June 2014

39

